![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Amura |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 4.2.2008 Город: Людиново Вы: другое ![]() |
Дан ряд: знак суммы от 0 до бесконечности: дробь: в числителе x^n, в знаменателе (3^n)*(n+1).
Я нашла радиус сходимости, он равен 3, теперь необходимо исследовать на сходимость этот ряд в граничных точках это 3 и -3. Получились ряды: 1) в числит 1, в знам n+1 2) в числит -1, в знам n+1. Есть предположение, что эти ряды расходятся, как гармонические, но может я ошибаюсь. и тогда область сходимости (-3;3) Прикрепленные файлы ![]() |
![]() ![]() |
Amura |
![]()
Сообщение
#2
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 4.2.2008 Город: Людиново Вы: другое ![]() |
Здравствуйте ещё раз,Возникла проблема с доказательством того, что знакочередующийся ряд условно сходится по признаку Лейбница, а именно с доказательством того, что предел а n- го равен нулю.
|
tig81 |
![]()
Сообщение
#3
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 26.5.2025, 1:10 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru