![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
3y6aStick |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Продвинутые Сообщений: 8 Регистрация: 19.3.2010 Город: Барнаул Учебное заведение: АлтГТУ Вы: студент ![]() |
Помогите пожалуйста
Игральную кость подбрасывают до тех пор, пока сумма выпавших очков не превысит 840. Оценить вероятность того, что для этого потребуется подбрасывать кость от 230 до 250 раз. Я так предполагаю тут надо пользоваться интегральной теоремой Муавра-Лапласа, но как ее применить до меня не доходит... Помогите пожалуйста а то уже ум за разум заходит Заранее спасибо! |
![]() ![]() |
malkolm |
![]()
Сообщение
#2
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 167 Регистрация: 14.6.2008 Город: Н-ск Вы: преподаватель ![]() |
А тут нет никаких p и q. Вместо p*q используйте свою дисперсию. Центральная предельная теорема была? Теорема Муавра - Лапласа - это её частный случай для схемы Бернулли испытаний с двумя исходами. А у нас не схема Бернулли - исходов в одном опыте 6, поэтому нужно пользоваться ЦПТ. Отличие невелико: для испытаний Бернулли дисперсия равна p*q, а у Вас - 35/12. Вычитается в теореме Муавра - Лапласа n*p, у Вас будет вычитаться n*M(x).
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 9:58 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru