IPB

Здравствуйте, гость ( Вход | Регистрация )

> Просто убийственная задача по терверу
3y6aStick
сообщение 19.3.2010, 15:05
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 8
Регистрация: 19.3.2010
Город: Барнаул
Учебное заведение: АлтГТУ
Вы: студент



Помогите пожалуйста
Игральную кость подбрасывают до тех пор, пока сумма выпавших очков не превысит 840. Оценить вероятность того, что для этого потребуется подбрасывать кость от 230 до 250 раз.
Я так предполагаю тут надо пользоваться интегральной теоремой Муавра-Лапласа, но как ее применить до меня не доходит... Помогите пожалуйста а то уже ум за разум заходит
Заранее спасибо!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
malkolm
сообщение 19.3.2010, 19:00
Сообщение #2


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



О, как интересно-то. И что за извращенцы сочиняют подобные задачи (IMG:style_emoticons/default/smile.gif)

Если обозначить через N то наименьшее число бросков, при котором впервые сумма превысит 840, то искомая вероятность
P(230 <= N <= 250) = P(N <= 250) - P(N <= 229).

Событие {N <= n} означает в точности, что после n бросков сумма уже превысила 840. Вот тут и место для теоремы Муавра - Лапласа (СКО числа очков при одном броске кости).

А что за проблемы? Дисперсию по таблице найти не умеете? Ищете второй момент = сумма квадратов значений, умноженных на вероятности. Потом вычитаете квадрат матожидания (3.5^2). Получается дисперсия. Стандартно отклонение - корень из неё.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 17:44

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru