![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Julia11 |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 24 Регистрация: 4.4.2009 Город: Moscow-city) Учебное заведение: ГУУ Вы: студент ![]() |
Вычислить приближенно с точностью 0,01.
корень 4 степени из 18. Представим 18 как 16+2, корень 4 степени из 16 равен 2. остается (1+0,125)^0.25 что разложится в степенной ряд. Погрешность - сумма отброшенных членов ряда, т.е. его остаток. Ряд знакочередующийся, следовательно, по следствию из теор Лейбница |Rn|<=An+1 Как дальше посчитать сколько членов ряда надо суммировать для этой точности? |
![]() ![]() |
Stensen |
![]()
Сообщение
#2
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 224 Регистрация: 6.11.2008 Город: Moscow Учебное заведение: МГУ ![]() |
Т.к. четвертый член <0,001, т.е.его порядок меньше требуемого (0,01), то его суммировать не нужно. В терминах бесконечно-малых - это член большего порядка малости, чем предыдущий.
P.S.: Точность приближ. выч-ий с помощью суммы ряда оценивается величиной отброшенного остатка ряда, в данном случае должно быть: |Rn| < 0,01. Известно, что для знакочередующихся рядов остаток ряда не превышает последнего отброшенного члена.(См.выше) |
Julia11 |
![]()
Сообщение
#3
|
Школьник ![]() Группа: Продвинутые Сообщений: 24 Регистрация: 4.4.2009 Город: Moscow-city) Учебное заведение: ГУУ Вы: студент ![]() |
Т.к. четвертый член <0,001, т.е.его порядок меньше требуемого (0,01), то его суммировать не нужно. В терминах бесконечно-малых - это член большего порядка малости, чем предыдущий. P.S.: Точность приближ. выч-ий с помощью суммы ряда оценивается величиной отброшенного остатка ряда, в данном случае должно быть: |Rn| < 0,01. Известно, что для знакочередующихся рядов остаток ряда не превышает последнего отброшенного члена.(См.выше) Ну а порядок третьего члена тоже меньше требуемого (0,01). С ним что делать? Учитывать в приближенном вычислении или отбрасывать? |
Stensen |
![]()
Сообщение
#4
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 224 Регистрация: 6.11.2008 Город: Moscow Учебное заведение: МГУ ![]() |
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 15:22 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru