IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> испытания бернулли и одномерное случайное блуждание
evs
сообщение 25.4.2018, 5:31
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 27.6.2017
Город: ростов



матожидание в испытаниях бернулли M(X)=np. пример 30 бросков монетки матожидание орла или решки = 30*0.5=15.

одномерное случаиное блуждание. Отклонение от начального положения можно характеризо­вать величиной типа расстояния; так называемое «среднее квадратичное рас­стояние» DC-K:√N

ожидаем, что среднее расстояние, пройденное за 30 шагов, должно быть равно √30 = 5,5.

получается если подбрасывать монетку 30 раз наиболее ожидаемый результат 15 орлов и 15 решек, а если вести график тех же подбрасываний то наиболее ожидаемый результат 20,5 и 9,5 орла/решки или решки/орла?

понимаю что где то ошибся. подскажите на простом русском языке где именно.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
evs
сообщение 1.5.2018, 6:20
Сообщение #2


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 27.6.2017
Город: ростов



приношу свои извинения! видимо я не совсем корректно поставил вопрос! хотел "на коротке и по существу".
и так условие задачи: бросаем идеальную монету 30 раз.
1)рассматриваем как испытания бернулли:
а)матожидание(орла/решки) = np=30*0.5=15.
б)дисперсия =√npq не интересует.
2)рассматриваем как случайное блуждание:
а)матожидание что среднего продвижения вообще не будет, поскольку мы с равной вероятностью можем идти как вперед, так и назад =0
б)матожидание что среднее расстояние, пройденное за 30 шагов( Dс-к)=√N=5.5 в ту или иную сторону от нуля.
в)дисперсия=1/2√N не интиресует
ВНИМАНИЕ вопрос:
откуда в одномерном случайном блуждании появилось матожидание среднего пройденного расстояния=5.5 если:
а)в испытаниях бернулли матожидание=0
б)в одномерном случайном блуждании( ожидаем что среднего продвижения вообще не будет)матожидание=0
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 2.12.2020, 18:04

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru