IPB

Здравствуйте, гость ( Вход | Регистрация )

> найти общее решение дифференциального уравнения
Shamil
сообщение 28.12.2012, 8:33
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 22.12.2012
Город: Грозный
Учебное заведение: ЧГУ
Вы: студент



найти общее решение дифференциального уравнения y''+y'*tg(x)=sin(2*x)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Руководитель проекта
сообщение 28.12.2012, 8:45
Сообщение #2


Руководитель проекта
******

Группа: Руководители
Сообщений: 3 189
Регистрация: 23.2.2007
Из: Казань
Город: Казань
Учебное заведение: КГУ
Вы: другое



В чем возникли проблемы?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Shamil
сообщение 28.12.2012, 16:23
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 22.12.2012
Город: Грозный
Учебное заведение: ЧГУ
Вы: студент



да вот ни как не могу понять как избавиться от tg(x) или вообще нужно от него избавляться)))))))))))) а характеристическое уравнение будет выглядеть вот так K^2+K*tg(x)=0 или k^2+k=0
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 28.12.2012, 17:31
Сообщение #4


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Shamil @ 28.12.2012, 18:23) *

да вот ни как не могу понять как избавиться от tg(x) или вообще нужно от него избавляться)))))))))))) а характеристическое уравнение будет выглядеть вот так K^2+K*tg(x)=0 или k^2+k=0

Характеристическое составляется для ДУ второго порядка с постоянными коэффициентами, т.е. не зависящими от х, т.е. не в рассматриваемом примере. Здесь делаете замену y'=p(x) и сводите к линейному уранвению
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 27.5.2025, 23:25

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru