![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Evil_D |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 25 Регистрация: 19.1.2011 Город: Барнаул Учебное заведение: УлГУ Вы: студент ![]() |
Здравствуйте!помогите пожалуйста,другу,блин,решаю.
У меня получается замкнутый контур, полученный из астройд,а потом через формулу Гаусса-остроградского получается неберущийся интеграл.((а дальше что делать незнай!задание на картинке Эскизы прикрепленных изображений ![]() |
![]() ![]() |
Тролль |
![]()
Сообщение
#2
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 964 Регистрация: 23.2.2007 Город: Москва Учебное заведение: МГУ ![]() |
Лучше не сферическую систему координат применять, а цилиндрическую. Тогда получаем, что
П = 2 * int dx int x dy А затем делаем замену x = r * cos fi, y = r * sin fi Получаем, что П = 2 * int (0 2pi) dfi int (0 a) r * r * cos fi Правда получается, что П = 0. |
Тролль |
![]()
Сообщение
#3
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 964 Регистрация: 23.2.2007 Город: Москва Учебное заведение: МГУ ![]() |
Похоже нашел ошибку. Так как z >= 0 и z = x, то x >= 0 и -pi/2 <= fi <= pi/2
Тогда получаем, что П = 2 * int dx int x dy = 2 * int (-pi/2 pi/2) dfi int (0 a) r * r * cos fi = 2 * a^3/3 * 2 = 4 * a^3/3. Ура (IMG:style_emoticons/default/smile.gif) |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 23:26 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru