:
x^3*y'''+xy'=x-3/x
x=e^t
t=lnx
y'=(dy/dt)*e^(-t)
y''=(((d^2)y/dt^2)-dy/dt)*e^(-2t)
:
((d^3)y/d(t^3))-3(d^2)y/dt^2+3dy/dt=0
y=y()+*1+*2
: y=c1+c2*e^(3/2)*cos((3/2)x)+c3*e^(3/2)*sin((3/2)x)
1:((d^3)y/d(t^3))-3(d^2)y/dt^2+3dy/dt=^t
2: ((d^3)y/d(t^3))-3(d^2)y/dt^2+3dy/dt=-3/(e^t)
1) y*1=xAe^x
y'*1=Ae^x+xAe^x
y'*1=2Ae^x+xAe^x
y''*1=3Ae^x+xAe^x
3Ae^x+xAe^x-3*(2Ae^x+xAe^x)+3Ae^x+3xAe^x=e^x
xAe^x=e^x
A=1
*1=xe^x
2)((d^3)y/d(t^3))-3(d^2)y/dt^2+3dy/dt=-3/(e^t)
y'*1=Ae^x+xAe^x
y'*1=2Ae^x+xAe^x
y''*1=3Ae^x+xAe^x
A=-3
y*2=-3xe^x
y=c1+c2*e^(3/2)*cos((3/2)x)+c3*e^(3/2)*sin((3/2)x)+xe^x-3xe^x
?