![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Skarlett |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 21.8.2013 Город: Екатеринбург ![]() |
Подскажите по какому методу с ним обращаться)) 8 лет не решала, трудновато вспоминается, а решить срочно нужно. Заранее спасибо))
(IMG:http://s019.radikal.ru/i601/1308/02/6653901bd94b.png) |
![]() ![]() |
Руководитель проекта |
![]()
Сообщение
#2
|
Руководитель проекта ![]() ![]() ![]() ![]() ![]() ![]() Группа: Руководители Сообщений: 3 189 Регистрация: 23.2.2007 Из: Казань Город: Казань Учебное заведение: КГУ Вы: другое ![]() |
|
venja |
![]()
Сообщение
#3
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
А вычисляется он красиво.
Умножается этот интеграл сам на себя, но переменная интегрирования обозначается буквой у. Затем полученное выражение рассматривается как повторные интегралы для соответствующего двойного интеграла. А для вычисления этого двойного интеграла в нем делается полялярная замена переменных. Лучше найти этот вывод в каком-нибудь классическом учебнике для КЛАССИЧЕСКИХ университетов (а то сейчас все назвали себя университетами). Думаю, есть в Фихтенгольце. |
Skarlett |
![]()
Сообщение
#4
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 21.8.2013 Город: Екатеринбург ![]() |
большое спасибо!выручили!!
|
tig81 |
![]()
Сообщение
#5
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
П.С. А под знаком дифференциала только х стоит?
|
Skarlett |
![]()
Сообщение
#6
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 21.8.2013 Город: Екатеринбург ![]() |
я так понимаю под знаком d стоит произведение x и exp^(-x^2)? По вашему совету обратилась к Фихтенгольцу, там действительно есть вывод решения
int(exp^(-x^2))dx в пределах от 0 до бесконечности, правда без обращения к полярным координатам. Только в примере есть еще произведение на х. Можно ли этот интеграл сначала разобрать по формуле интегрирования по частям? |
venja |
![]()
Сообщение
#7
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
|
A_nn |
![]()
Сообщение
#8
|
Ассистент ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 720 Регистрация: 26.2.2007 Город: СПб Вы: преподаватель ![]() |
А я бы наоборот посоветовала "разобрать по частям" (и убедиться, что не помогает (IMG:style_emoticons/default/smile.gif))
Ну а если под ДИФФЕРЕНЦИАЛОМ действительно стоит произведение, то автору вопроса стоит посмотреть внимательнее на определение интеграла вообще. |
venja |
![]()
Сообщение
#9
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
|
A_nn |
![]()
Сообщение
#10
|
Ассистент ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 720 Регистрация: 26.2.2007 Город: СПб Вы: преподаватель ![]() |
|
Skarlett |
![]()
Сообщение
#11
|
Новичок ![]() Группа: Продвинутые Сообщений: 7 Регистрация: 21.8.2013 Город: Екатеринбург ![]() |
пожалуста, не кидайтесь помидорами)), этот интеграл и есть интеграл эйлера-пуассона только не в классической записи или он сводится к нему?
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 24.5.2025, 22:14 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru