IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> y"+4y'+4y=cos2x
Ирок
сообщение 12.12.2010, 12:20
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 12.12.2010
Город: неважно
Учебное заведение: неважно
Вы: студент



y"+4y'+4y=cos2x

Помогите решить вторую часть уравнения(((
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Тролль
сообщение 12.12.2010, 13:33
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Сначала находим общее решение, оно будет иметь вид
y_общ = C1 * e^(-2x) + C2 * x * e^(-2x)
А затем ищем частное в виде:
у_частн = A * cos 2x + B * sin 2x
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Ирок
сообщение 12.12.2010, 13:47
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 12.12.2010
Город: неважно
Учебное заведение: неважно
Вы: студент



Цитата(Тролль @ 12.12.2010, 18:33) *

Сначала находим общее решение, оно будет иметь вид
y_общ = C1 * e^(-2x) + C2 * x * e^(-2x)
А затем ищем частное в виде:
у_частн = A * cos 2x + B * sin 2x


Дак вот не могу сообразить! никак не могу понять что к чему в этом чертовом частном решении :'(
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 12.12.2010, 14:04
Сообщение #4


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Ирок @ 12.12.2010, 15:47) *

Дак вот не могу сообразить! никак не могу понять что к чему в этом чертовом частном решении :'(

Что имеется в виду? Вам написали, в каком виде искать, находите неизвестные коэффициенты А и В.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 24.5.2025, 22:20

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru