IPB

Здравствуйте, гость ( Вход | Регистрация )

> Частичная сумма ряда
Irisha
сообщение 4.12.2009, 12:32
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 23
Регистрация: 3.4.2009
Город: Рязань
Учебное заведение: РГРТУ
Вы: студент



Нужно найти частичную сумму ряда и исследовать его сходимость

ряд от 1 до бесконечности ((1/2n)+(1/3n))

s1=1/2 + 1/3

s2=1/4 + 1/6

s3=1/6 + 1/9

s4=1/8 + 1/12

Составляем частичную сумму Sn = (1/2 + 1/3 + 1/4 + 1/6 + 1/6 + 1/9 + 1/8 + 1/12 + ... 1/2n + 1/3n) = 1/2n + 1/3n

Не пойму, в чем я ошиблась, потому что если брать предел от этой суммы, он будет равен 0, а такого быть не может, так как сумма не должна = 0. Подскажите, в чем ошибка и как правильно вычислить.

Заранее, огромное спасибо!!!

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Irisha
сообщение 4.12.2009, 13:13
Сообщение #2


Школьник
*

Группа: Продвинутые
Сообщений: 23
Регистрация: 3.4.2009
Город: Рязань
Учебное заведение: РГРТУ
Вы: студент



Если частичная сумма равна:

Sn = (1/2 + 1/3 + 1/4 + 1/6 + 1/6 + 1/9 + 1/8 + 1/12 + ... 1/2n + 1/3n),

то чтобы проверить сходимость ряда, нужно найти от нее предел, предел от Sn получается будет равен: 1/2 + 1/3 + 1/4 + 1/6 + 1/6 + 1/9 + 1/8 + 1/12 + ... ?

Это правильное решение?

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 29.5.2025, 10:07

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru