IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> решение неопределенного интеграла, решение неопределенного интеграла
Кузнецов Олег
сообщение 4.12.2009, 5:18
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 51
Регистрация: 26.5.2009
Город: Тверь
Вы: другое



Здраствуйте. Помогите пожалуйстса решить неопределенный интеграл : (exp((sinx)^2))*sin(2*x)dx.
В задачнике написано решить методом замены переменной предварительно преобразовав выражение.
Как преобразовать выражение.
На ум приходят преобразования: sin(2*x) = 2sin(x)cos(x) и (sin(x))^2 = 1 - (cos(x))^2.
Заранее благодарен.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Julia
сообщение 4.12.2009, 5:40
Сообщение #2


Ассистент
****

Группа: Julia
Сообщений: 593
Регистрация: 23.2.2007
Город: Улан-Удэ
Учебное заведение: БГУ
Вы: преподаватель



sin(2*x) = 2sin(x)cos(x)
И дальше замена sin(x) = t.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
граф Монте-Кристо
сообщение 4.12.2009, 7:07
Сообщение #3


Доцент
******

Группа: Преподаватели
Сообщений: 3 840
Регистрация: 27.9.2007
Из: Старый Оскол
Город: Москва
Учебное заведение: МФТИ/МАИ
Вы: другое



Можно сразу (sin(x))^2 = t - так,наверно,будет проще.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Кузнецов Олег
сообщение 4.12.2009, 7:30
Сообщение #4


Студент
**

Группа: Продвинутые
Сообщений: 51
Регистрация: 26.5.2009
Город: Тверь
Вы: другое



Если подстановка (sin(x))^2 = t тогда dt = d((sin(x))^2) =
= 2sin(x)cos(x)dx.
Отсюда подинтегральное выражение (exp((sinx)^2))*sin(2*x)dx преобразуется в (exp((sinx)^2))*2sin(x)cos(x)dx и после подстановки выходит exp(t)dt. Интеграл разрешается как exp(t) + С или exp((sin(x))^2) + C.
Правильны ли рассуждения или нет?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Julia
сообщение 4.12.2009, 7:32
Сообщение #5


Ассистент
****

Группа: Julia
Сообщений: 593
Регистрация: 23.2.2007
Город: Улан-Удэ
Учебное заведение: БГУ
Вы: преподаватель



Да, все правильно.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Кузнецов Олег
сообщение 4.12.2009, 8:14
Сообщение #6


Студент
**

Группа: Продвинутые
Сообщений: 51
Регистрация: 26.5.2009
Город: Тверь
Вы: другое



Большое спасибо всем за помощь.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 22:11

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru