![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Lutik |
![]()
Сообщение
#1
|
Аспирант ![]() ![]() ![]() Группа: Продвинутые Сообщений: 271 Регистрация: 24.12.2008 Город: Москва ![]() |
Задача на собственные значения:
y''+(k^2)*y=0 если y(0)=y(pi) и y'(pi)=0 y=e^(Lx) y''=(L^2)*e^(Lx) (L^2)*e^(Lx)+(k^2)*e^(Lx)=0 (e^(Lx))*((L^2)+k^2)=0 L=+-ki y=c1cos(kx)+c2sin(kx) y(0)=c1 y(pi)=-c1 y(0)=y(pi): c1=-c1, c1=0 y'=-k*c1*sin(kx)+k*c2*cos(kx) y'(pi)=-k*c1 -k*c2=0 тогда и с2 тоже равно 0, но это не правильно же |
![]() ![]() |
Lutik |
![]()
Сообщение
#2
|
Аспирант ![]() ![]() ![]() Группа: Продвинутые Сообщений: 271 Регистрация: 24.12.2008 Город: Москва ![]() |
Ура! (IMG:style_emoticons/default/smile.gif)
Теперь с2=0 и найти собственную функцию. Собственная функция:у=c1*cos(2*n*x) ? |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 28.5.2025, 5:12 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru