IPB

Здравствуйте, гость ( Вход | Регистрация )

> lim(x->0;y->0) (y^2+2x)/(y^2-2x)
Lion
сообщение 1.6.2007, 6:21
Сообщение #1


Ассистент
****

Группа: Преподаватели
Сообщений: 508
Регистрация: 23.2.2007
Из: Белоярский,ХМАО
Город: Белоярский, ХМАО



lim(x->0;y->0) (y^2+2x)/(y^2-2x)

Можно ли здесь заменить y=kx, где k - некоторое число?
И тогда
lim(x->0;y->0) (y^2+2x)/(y^2-2x)=

=lim(x->0) ((kx)^2+2x)/((kx)^2-2x)=

=lim(x->0) (k^2x+2)/(k^2x-2)=-1

Или это неправильное решение?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
venja
сообщение 1.6.2007, 8:58
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Цитата(Lion @ 1.6.2007, 12:21) *

lim(x->0;y->0) (y^2+2x)/(y^2-2x)

Можно ли здесь заменить y=kx, где k - некоторое число?
И тогда
lim(x->0;y->0) (y^2+2x)/(y^2-2x)=

=lim(x->0) ((kx)^2+2x)/((kx)^2-2x)=

=lim(x->0) (k^2x+2)/(k^2x-2)=-1

Или это неправильное решение?


Неверно. Конкретную форму зависимости у от х задают в том случае, если хотят доказать отсутствие предела.
Его действительно нет. Для доказательства надо стремление к началу координат брать по кривым вида x=k*y^2
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 9:31

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru