IPB

Здравствуйте, гость ( Вход | Регистрация )

> Общий член последовательности, заданной рекуррентно
tig81
сообщение 29.10.2009, 18:16
Сообщение #1


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Добрый вечер! Вот имеется такое задание: найти общий член последовательности, заданной рекуррентно: x[n+1]=(x[n]+1)/(n+1), x[1]=0.
Заменой y[n]/n свели к последовательности y[n+1]=y[n]/n+1.
Для однородной последовательности y[n+1]=y[n]/n формулу нашли: y[n]=(n-1)!
Как поступить в случае неоднородной последовательности? (IMG:style_emoticons/default/blush.gif)

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
граф Монте-Кристо
сообщение 29.10.2009, 19:45
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 840
Регистрация: 27.9.2007
Из: Старый Оскол
Город: Москва
Учебное заведение: МФТИ/МАИ
Вы: другое



Цитата(tig81 @ 29.10.2009, 21:16) *

Добрый вечер! Вот имеется такое задание: найти общий член последовательности, заданной рекуррентно: x[n+1]=(x[n]+1)/(n+1), x[1]=0.
Заменой y[n]/n свели к последовательности y[n+1]=y[n]/n+1.
Для однородной последовательности y[n+1]=y[n]/n формулу нашли: y[n]=(n-1)!
Как поступить в случае неоднородной последовательности? (IMG:style_emoticons/default/blush.gif)

Скорее,всё-таки y[n]=1/(n-1)! (IMG:style_emoticons/default/smile.gif)
Можно,наверно,поступить так:
y[n]=c[n]/(n-1)!
Тогда y[n+1]=c[n+1]/n! = 1+c[n]/n!, откуда с[n]+n!=c[n+1]
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 29.10.2009, 19:50
Сообщение #3


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(граф Монте-Кристо @ 29.10.2009, 21:45) *

Скорее,всё-таки y[n]=1/(n-1)! (IMG:style_emoticons/default/smile.gif)

точно, именно так и есть. Пропустила. Данке.
Цитата
Можно,наверно,поступить так:
y[n]=c[n]/(n-1)!
Тогда y[n+1]=c[n+1]/n! = 1+c[n]/n!, откуда с[n]+n!=c[n+1]

спасибки, пошла думать.

П.С. А где по подобным заданиям можно теории посмотреть, а то что-то поисковики данный вопрос никак... Или я не там... (IMG:style_emoticons/default/sad.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 27.5.2025, 22:49

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru