![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Jhey |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Пользователи Сообщений: 1 Регистрация: 21.10.2009 Город: Санкт-Петербург Учебное заведение: СПбГУ Вы: студент ![]() |
Решали задачу в аудитории.
Сколькими способами можно разложить 10 одинаковых монет по 2-м карманам,чтобы ни один карман не был пуст. И без формулы можно решить - 9 способов. Преподаватель дал формулу - Размещение без повтора из 3 по 2. Получилось верно. 9. И преподаватель ушел,не объяснив, откуда там 3-ка взялась... Я нашла в интернете решение задачи такой же,только кармана там 3. Предлагают формулу сочетания из 12 по 2. Ребята, подскажите,откуда они берут эти числа...Ладно 2 - понятно - число карманов. Но откуда в первом случае 3 взялась, а во втором 12?? Завтра контрольная,очень хотелось бы понять ... |
![]() ![]() |
malkolm |
![]()
Сообщение
#2
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 167 Регистрация: 14.6.2008 Город: Н-ск Вы: преподаватель ![]() |
Ну, во-первых, в примере, найденном в интернете, наверное, не было ограничений на непустоту карманов?
Во-вторых, число размещений без повторов из 3 по 2 это 3!/(3-2)! = 6, а не 9. Почитайте вот этот вывод о числе способов разложить k неразличимых шариков по n ящикам: http://www.nsu.ru/mmf/tvims/chernova/tv/le...l#SECTION000216 (начиная со слов "есть n ящиков, в которых размещаются k шаров"). При таком размещении есть C(n+k-1; k)=C(n+k-1; n-1) вариантов размещения. Если мы хотим, чтобы все ящики были непусты, нужно по одному шарику положить в каждый ящик заранее, а остальные k-n шариков размещать как угодно. Тогда (меняем k на k-n в той же формуле) будет C(n+(k-n)-1; k-n) = C(n+(k-n)-1; n-1) вариантов разложить шарики так, чтобы все ящики были непусты. Это число C(k-1; n-1) для наших k=10 и n=2 превратится в C(9;1)=9; для k=10, n=3 - в C(9;2)=36 и т.д. |
Juliya |
![]()
Сообщение
#3
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Активисты Сообщений: 1 197 Регистрация: 4.11.2008 Город: Москва Вы: преподаватель ![]() |
Сайт опять чего-то висит НГУ... Можно эту задачу ещё у Феллера посмотреть...
Решали задачу в аудитории. Сколькими способами можно разложить 10 одинаковых монет по 2-м карманам,чтобы ни один карман не был пуст. И без формулы можно решить - 9 способов. Преподаватель дал формулу - Размещение без повтора из 3 по 2. Получилось верно. 9. И преподаватель ушел,не объяснив, откуда там 3-ка взялась... не история, а набор софизмов каких-то...(IMG:style_emoticons/default/smile.gif) больше всего понравилось : Цитата Размещение без повтора из 3 по 2. Получилось верно. 9. |
malkolm |
![]()
Сообщение
#4
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 167 Регистрация: 14.6.2008 Город: Н-ск Вы: преподаватель ![]() |
Сайт опять чего-то висит НГУ... А у меня нынче открывается (IMG:style_emoticons/default/smile.gif) Вот тт вроде то же самое: http://www.intuit.ru/department/mathematic...theory/1/1.html, или вот тут другой источник: http://emf.ulstu.ru/metod/Metod_Kombi/g39.htm Думаю, про сочетания с повторениями автору вопроса рассказывали в курсе. |
Juliya |
![]()
Сообщение
#5
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Активисты Сообщений: 1 197 Регистрация: 4.11.2008 Город: Москва Вы: преподаватель ![]() |
ничего себе .. это какой-то новый ресурс? Спасибо, заложила закладочку...
|
malkolm |
![]()
Сообщение
#6
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 167 Регистрация: 14.6.2008 Город: Н-ск Вы: преподаватель ![]() |
Сравнительно новый. Но там тоже без конца "сервер перегружен, ошибка". Кризис (IMG:style_emoticons/default/smile.gif)
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 23:08 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru