![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
jeka |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Продвинутые Сообщений: 8 Регистрация: 24.5.2009 Город: Kiev ![]() |
Необходимо найти распределение случайной величины X, которая является слабой границей последовательности с.в X(n), X(n) удовлетворяет следуйщему уравнению:
X(n)=X(K(n))+1 где K(n) имеет распределение P{K(n)=k)=n/((n-1)k(k+1)); или эквивалентно P{X(n)=m}=Sum(from k=1 to n-1) (n/((n-1)k(k+1))*P{X(k)=m-1} Буду рад любой информации на эту тему, заранее спасибо |
![]() ![]() |
malkolm |
![]()
Сообщение
#2
|
Старший преподаватель ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 2 167 Регистрация: 14.6.2008 Город: Н-ск Вы: преподаватель ![]() |
Хм, забавно, не вижу, где тут можно приклеить двойные п.ф. ...
Ну ладно, если нигде не ошибаюсь: дальше рядом выписываете f(n+1,z), в ней n слагаемых (причём последнее тоже содержит f(n,z)), а в f(n,z) - (n-1) слагаемое. И общие слагаемые у этих двух сумм очень похожи - только множителем отличаются: P(K(n+1) = k)/P(K(n) = k) = 1 - 1/n^2. Поэтому f(n+1, z) = (1-1/n^2)*f(n,z) + z*f(n,z)/n^2 = f(n,z)*(1- (1-z)/n^2). Отсюда f(n+1,z) = Prod(k=1..n) [1 - (1-z)/k^2], если f(1,z) = 1 = E z^0. Вот только что за распределение у величины с такой п.ф., всё равно не видно - надо искать что-нибудь по её поводу в литературе. Матожидание и дисперсия легко считаются через ряды матожиданий/дисперсий бернуллевских величин. Сумма 1/k^2 от 1 до +оо есть пи^2/6, cумма 1/k^4 от 1 до +оо есть пи^4/90. |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 19:35 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru