![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
forgpwd |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 16 Регистрация: 20.3.2009 Город: forgpwd ![]() |
Из колоды в 36 карт выбирается 6.
Определить вер-ть, что среди этих карт будут представительницы всех 4 мастей? Понятно, что n = С(36,6) А вот чему равно m не соображу что- то |
![]() ![]() |
venja |
![]()
Сообщение
#2
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
Я когда-то решал эту задачу, но для 52 карт. Однако это скажется понятным образом лишь в конце решения. Не уверен, что решение - самое короткое, но зато понятное.
Сначала напомню формулу для вероятности суммы четырех событий (хотя это и несложно): P(A+B+C+D)=P(A)+P(B )+P(С )+P(D) – P(AB) – P(AC) – P(AD) – P(CD) – P(BC) – P(BD) + P(ABC) + P(ABD) + P(ACD) + P(BCD) – P(ABCD) . Обозначим масти номерами (так удобнее) : 1 – пики, 2 – крести, 3 – бубни, 4 – черви. Обозначим события: А – среди выданных 6 карт есть представители всех мастей. А1 – среди выданных карт есть пиковые, … , А4 – среди выданных есть червовые. Обозначим через В, В1, …, В4 события, противоположные событиям А, А1, …,А4. Тогда Р(А) = 1 – Р(В). Найдем Р(В). Ясно, что В=В1+В2+В3+В4. Поэтому сейчас для вычисления Р(В) надо записать формулу выше P(В1+B2+В3+В4)=P(В1)+P(В2)+P(В3)+P(В4) – P(В1B2) – P(В1В3) – P(В1В4) – P(В3В4) – P(B2В3) – P(B2В4) + P(В1В2В3) + P(В1В2В4) + P(В1В3В4) + P(B2В3В4) – P(В1В2В3В4) . Ясно, что последнее слагаемое = 0. Из симметрии мастей все слагаемые в каждой из трех групп слагаемых в этой формуле одинаковы, а потому P(В)=4*P(В1) – 6*P(В1B2) + 4*P(В1В2В3) . Теперь уже проще. Пусть n = С(52,6) – общее число различных шестерок карт. Тогда ясно, что Р(В1)=С(39,6)/n, Р(В1В2)=С(26,6)/n, а Р(В1В2В3)=С(13,6)/n . Подставляя это в формулу выше, получим Р(В)=0.573517917. А потому Р(А) = 0.426482082 . |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 18:01 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru