IPB

Здравствуйте, гость ( Вход | Регистрация )

> Интеграл комплексного числа
lexx007
сообщение 9.4.2009, 12:35
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 136
Регистрация: 30.3.2008
Город: Оренбург
Учебное заведение: ОГУ
Вы: студент



(IMG:http://s54.radikal.ru/i143/0904/00/d4b7071aaf0b.jpg)

Посмотрите пожалуйста задание выполнил полностью и правильно ли? В принципе пользовался ПРИМЕРОМ из Reshebnika
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
dr.Watson
сообщение 16.4.2009, 4:07
Сообщение #2


Студент
**

Группа: Продвинутые
Сообщений: 222
Регистрация: 25.2.2009
Город: Новосибирск



Я так понял задачу:
Есть область D={z| 1<|z|<2, Re z > 0}, а L - это контур, ограничивающий эту область. Он состоит из двух отрезков и двух полуокружностей. Интеграл по этому контуру - это просто криволинейный интеграл. Направление обхода не указано, значит по умолчанию предполагаем обход против хода часовой стрелки. Вот этот контур естественно и резать на 4 части с напрашивающейся параметризацией каждой части. От аналитической функции интеграл по замкнутому контуру равен нулю, а здесь аналитичности нету, поэтому считать надо, но всё просто - тупо на каждом кусочке через параметризацию сводим к определённому интегралу и всё.

P.S. Топикстартер, похоже, потерял интерес к своему вопросу, поэтому решил добавить. Если сообразить, что на каждом из 4-х кусочках подинтегральная функция совпадает с аналитической вне нуля - одна на отрезках и по одной на каждой из полуокружностей, то и параметризовать не надо, это слегка упрощает счёт и без того простой. Итого: 4i.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 26.5.2025, 3:09

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru