IPB

Здравствуйте, гость ( Вход | Регистрация )

> Помогите с неопределенными интегралами
Yano4k@
сообщение 5.4.2009, 14:52
Сообщение #1


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Помогите пожулуйста! Хотя бы подскажите!
1) int [x^2*sin3xdx]
2) int [x^2 dx/cos^2(x^3)]
3) int [sin2x dx/(cos^2(x) + 3)]
4) int [x*ln^2(x) dx]
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
2 страниц V  1 2 >  
Ответить в эту темуОткрыть новую тему
Ответов(1 - 19)
Dimka
сообщение 5.4.2009, 15:21
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 4 925
Регистрация: 26.2.2007
Город: _
Вы: другое



Цитата(Yano4k@ @ 5.4.2009, 18:52) *

Помогите пожулуйста! Хотя бы подскажите!
1) int [x^2*sin3xdx]
2) int [x^2 dx/cos^2(x^3)]
3) int [sin2x dx/(cos^2(x) + 3)]
4) int [x*ln^2(x) dx]


1. Два раза по частям u=x^2
2. x^3 под знак дифференциала
3. Представить sin2x=2sinx cosx, далее cos x под знак дифференциала
4 По частям два раза. Первый раз u=[ln(x)]^2, второй раз u=[ln(x)]

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 5.4.2009, 15:49
Сообщение #3


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Правила форума
Примеры

Появятся КОНКРЕТНЫЕ вопросы, тема будет открыта.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 6.4.2009, 8:21
Сообщение #4


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



1) int [sinx dx/(1-cosx)] = |вношу sinx под знак дифференциала| = int [d(cosx)/(1-cosx)] = ln(1-cosx), так?
2) int [(2-x)*sinxdx] = |интегрирую по частям: u=2-x; dv=sinxdx| = (2-cosx)*(-cosx) - int [(2x-(x^2)/2)*(-cosx)dx], и дальше не знаю как... еще раз интегрировать по частям?
3) int [sin2x*sqrt(2-cos^2(x))dx], интегрировать по частям че-то не получается...
4) int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx], так?

заранее спасибо
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Тролль
сообщение 6.4.2009, 10:05
Сообщение #5


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(Yano4k@ @ 6.4.2009, 12:21) *

1) int [sinx dx/(1-cosx)] = |вношу sinx под знак дифференциала| = int [d(cosx)/(1-cosx)] = ln(1-cosx), так?
2) int [(2-x)*sinxdx] = |интегрирую по частям: u=2-x; dv=sinxdx| = (2-cosx)*(-cosx) - int [(2x-(x^2)/2)*(-cosx)dx], и дальше не знаю как... еще раз интегрировать по частям?
3) int [sin2x*sqrt(2-cos^2(x))dx], интегрировать по частям че-то не получается...
4) int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx], так?

заранее спасибо


1) int sin x dx/(1 - cos x) = int d(-cos x)/(1 - cos x) = int d(1 - cos x)/(1 - cos x) = ln |1 - cos x| + C
2) int (2 - x) * sin x dx = int (2 - x) d(-cos x) = (x - 2) * cos x + int cos x d(2 - x) =
= (x - 2) * cos x - int cos x dx = (x - 2) * cos x - sin x + C
3) sin 2x вносим под дифференциал, а cos^2 x = (1 + cos 2x)/2
4) так

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 6.4.2009, 11:19
Сообщение #6


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(Тролль @ 6.4.2009, 16:05) *

1) int sin x dx/(1 - cos x) = int d(-cos x)/(1 - cos x) = int d(1 - cos x)/(1 - cos x) = ln |1 - cos x| + C
2) int (2 - x) * sin x dx = int (2 - x) d(-cos x) = (x - 2) * cos x + int cos x d(2 - x) =
= (x - 2) * cos x - int cos x dx = (x - 2) * cos x - sin x + C
3) sin 2x вносим под дифференциал, а cos^2 x = (1 + cos 2x)/2
4) так




1) Здесь забыла, что производная sinx = -cosx
2) Здесь я не совсем понимаю решения... Сначала Вы вносите sinx под знак дифференциала, а дальше как так получилось? (x - 2) * cos x + int cos x d(2 - x) это интегрирование по частям? Потом уже (2-х) под зак дифференциала?
3) sqrt((3-cos2x)^3)/3 такой ответ?
стыдно (IMG:style_emoticons/default/blush.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Тролль
сообщение 6.4.2009, 12:27
Сообщение #7


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(Yano4k@ @ 6.4.2009, 15:19) *

1) Здесь забыла, что производная sinx = -cosx
2) Здесь я не совсем понимаю решения... Сначала Вы вносите sinx под знак дифференциала, а дальше как так получилось? (x - 2) * cos x + int cos x d(2 - x) это интегрирование по частям? Потом уже (2-х) под зак дифференциала?
3) sqrt((3-cos2x)^3)/3 такой ответ?
стыдно (IMG:style_emoticons/default/blush.gif)


2) int (2 - x) d(-cos x) = | u = 2 - x; v = -cos x | = (2 - x) * (-cos x) + int cos x d(2 - x)
Да, это интегрирование по частям.
3) int sin 2x * (2 - cos^2 x)^(1/2) dx = int (2 - cos^2 x)^(1/2) d(-1/2 * cos 2x) =
= -1/2 * int (2 - (1 + cos 2x)/2)^(1/2) d(cos 2x) =
= -1/2 * int ((3 - cos 2x)/2)^(1/2) d(cos 2x) = 1/2^(3/2) * int (3 - cos 2x)^(1/2) d(-cos 2x) =
= 1/2^(3/2) * int (3 - cos 2x)^(1/2) d(3 - cos 2x) =
= 1/2^(3/2) * 2/3 * (3 - cos 2x)^(3/2) + C =
= 1/(3 * 2^(1/2)) * (3 - cos 2x) * (3 - cos 2x)^(1/2) + C
Кажется так.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 6.4.2009, 16:30
Сообщение #8


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(Тролль @ 6.4.2009, 18:27) *

2) int (2 - x) d(-cos x) = | u = 2 - x; v = -cos x | = (2 - x) * (-cos x) + int cos x d(2 - x)
Да, это интегрирование по частям.
3) int sin 2x * (2 - cos^2 x)^(1/2) dx = int (2 - cos^2 x)^(1/2) d(-1/2 * cos 2x) =
= -1/2 * int (2 - (1 + cos 2x)/2)^(1/2) d(cos 2x) =
= -1/2 * int ((3 - cos 2x)/2)^(1/2) d(cos 2x) = 1/2^(3/2) * int (3 - cos 2x)^(1/2) d(-cos 2x) =
= 1/2^(3/2) * int (3 - cos 2x)^(1/2) d(3 - cos 2x) =
= 1/2^(3/2) * 2/3 * (3 - cos 2x)^(3/2) + C =
= 1/(3 * 2^(1/2)) * (3 - cos 2x) * (3 - cos 2x)^(1/2) + C
Кажется так.


Спасибо! Спасибо! У меня получились 2) и 3)

теперь с 4) мучаюсь: int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx], а теперь как? дальше опять интегрировать по частям? упростить что-то не получается...
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 6.4.2009, 16:55
Сообщение #9


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Yano4k@ @ 6.4.2009, 19:30) *

теперь с 4) мучаюсь: int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx], а теперь как? дальше опять интегрировать по частям? упростить что-то не получается...

Рассмотирм интеграл:
int(x^2/(2*sqrt(1-x^2))dx)
Запишем его следующим образом:
(1/2)int[{(1-x^2)+1}/sqrt(1-x^2)dx]. Затем почленно поделите.

Либо сделайте замену x=sint.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 6.4.2009, 17:32
Сообщение #10


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(tig81 @ 6.4.2009, 22:55) *

Рассмотирм интеграл:
int(x^2/(2*sqrt(1-x^2))dx)
Запишем его следующим образом:
(1/2)int[{(1-x^2)+1}/sqrt(1-x^2)dx]. Затем почленно поделите.

Либо сделайте замену x=sint.


Я делала замену x=sint. В конце получился ответ: (x^2/2)*arcsinx - 1/2arcsinx
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 6.4.2009, 18:21
Сообщение #11


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Yano4k@ @ 6.4.2009, 20:32) *

Я делала замену x=sint. В конце получился ответ: (x^2/2)*arcsinx - 1/2arcsinx

Распишите, что получили после замены и как считали? Т.к. что-то не то.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 6.4.2009, 19:31
Сообщение #12


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(tig81 @ 7.4.2009, 0:21) *

Распишите, что получили после замены и как считали? Т.к. что-то не то.



int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx] = (x^2/2)*arcsinx - (1/2)int[{(1-x^2)+1}/sqrt(1-x^2)dx] = |замена x = sint| = (x^2/2)*arcsinx - (1/2)int[(1-sin^2(t)+1)/sqrt(1-sin^2(t)) dt = (x^2/2)*arcsinx - (1/2)int[(cos^2(t)+1)/sqrt(1-sin^2(t)) dt = (x^2/2)*arcsinx - (1/2)int[d(1-sin^2(t)/sqrt(1-sin^2(t)) = (x^2/2)*arcsinx - 1/2arcsin(sint) = (x^2/2)*arcsinx - 1/2arcsinx
вот так, но я не уверена...
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 6.4.2009, 19:36
Сообщение #13


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



uv правильно, поэтоиу разбираемся с интегралом
Цитата(Yano4k@ @ 6.4.2009, 22:31) *

... - (1/2)int[{(1-x^2)+1}/sqrt(1-x^2)dx] = |замена x = sint|

Если решили через замену, то числитель преобразовывать не надо.
Т.е. рассматриваем интеграл (-(1/2) для экономии места не пишу):
int[x^2/sqrt(1-x^2)dx]. Теперь делайте замену x = sint.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 7.4.2009, 8:09
Сообщение #14


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(tig81 @ 7.4.2009, 1:36) *

uv правильно, поэтоиу разбираемся с интегралом

Если решили через замену, то числитель преобразовывать не надо.
Т.е. рассматриваем интеграл (-(1/2) для экономии места не пишу):
int[x^2/sqrt(1-x^2)dx]. Теперь делайте замену x = sint.



int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx] = (x^2/2)*arcsinx - (1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint| = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(1-sin^2(t)dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(cos^2(t))dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/cos(t)dt]... а дальше как? int[sin^2(t)/cos(t)dt] = int[sint*tgt dt]?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 7.4.2009, 17:32
Сообщение #15


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Yano4k@ @ 7.4.2009, 11:09) *

int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx] = (x^2/2)*arcsinx - (1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint| = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(1-sin^2(t)dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(cos^2(t))dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/cos(t)dt]... а дальше как? int[sin^2(t)/cos(t)dt] = int[sint*tgt dt]?

Итак, рассмотри сам интеграл:
...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|=...
dx чему равен? Разве просто dt?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Dimka
сообщение 7.4.2009, 17:46
Сообщение #16


Доцент
******

Группа: Преподаватели
Сообщений: 4 925
Регистрация: 26.2.2007
Город: _
Вы: другое



Цитата(Yano4k@ @ 7.4.2009, 12:09) *

int [x*arcsin(x)dx] = |u=arcsinx; dv = xdx| = (x^2/2)*arcsinx - int [x^2/(2*sqrt(1-x^2))dx] = (x^2/2)*arcsinx - (1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint| = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(1-sin^2(t)dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/sqrt(cos^2(t))dt] = (x^2/2)*arcsinx - (1/2)int[sin^2(t)/cos(t)dt]... а дальше как? int[sin^2(t)/cos(t)dt] = int[sint*tgt dt]?


Куда-то Вас понесло.

Попробуйте
1. Подстановка arcsin(x)=t
2 Далее получите формулу в которой нужно представить sintcost=0,5sin2t
3 Далее по частям u=t, dv=0.5sin2t dt

может так будет доходчивее?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 7.4.2009, 18:28
Сообщение #17


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(Dimka @ 7.4.2009, 23:46) *

Куда-то Вас понесло.

Попробуйте
1. Подстановка arcsin(x)=t
2 Далее получите формулу в которой нужно представить sintcost=0,5sin2t
3 Далее по частям u=t, dv=0.5sin2t dt

может так будет доходчивее?



Я не понимаю, что будет после подстановки arcsin(x)=t и что это даст... можно поподробнее?

Цитата(tig81 @ 7.4.2009, 23:32) *

Итак, рассмотри сам интеграл:
...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|=...
dx чему равен? Разве просто dt?


...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|= -(1/2)int[sin^2(t)/sqrt(1-sin^2(t)d(cost)] = -(1/2)int[sin^2(t)/cost d(cost) так? дальше не знаю...
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 7.4.2009, 19:10
Сообщение #18


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Yano4k@ @ 7.4.2009, 21:28) *

Я не понимаю, что будет после подстановки arcsin(x)=t и что это даст... можно поподробнее?

вы сделайте замену, увидите. (IMG:style_emoticons/default/bigwink.gif)
Цитата
...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|= -(1/2)int[sin^2(t)/sqrt(1-sin^2(t)d(cost)] = -(1/2)int[sin^2(t)/cost d(cost) так? дальше не знаю...

d(cost) откуда взялось?
Хм...
x = sint
dx = d(sint)
dx=cost dt
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Yano4k@
сообщение 8.4.2009, 9:01
Сообщение #19


Аспирант
***

Группа: Продвинутые
Сообщений: 279
Регистрация: 5.4.2009
Город: Сорум
Учебное заведение: УлГТУ
Вы: студент



Цитата(tig81 @ 8.4.2009, 1:10) *

вы сделайте замену, увидите. (IMG:style_emoticons/default/bigwink.gif)

d(cost) откуда взялось?
Хм...
x = sint
dx = d(sint)
dx=cost dt



...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|= -(1/2)int[sin^2(t)*cost/sqrt(1-sin^2(t)dt] = -(1/2)int[sin^2(t)dt] = -1/2(1/2(t-sint*cost)) = -1/2(t/2-1/2sint*cost) = -1/4t+1/8sin2t, так?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 8.4.2009, 11:42
Сообщение #20


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Yano4k@ @ 8.4.2009, 12:01) *

...-(1/2)int[x^2/sqrt(1-x^2)dx] = |замена x = sint|= -(1/2)int[sin^2(t)*cost/sqrt(1-sin^2(t)dt] = -(1/2)int[sin^2(t)dt] = -1/2(1/2(t-sint*cost)) = -1/2(t/2-1/2sint*cost) = -1/4t+1/8sin2t, так?

Не поняла некоторые ваши преобразования. Там где выделено красным... Ответ почти такой получилось, только почему-то возле синуса знак "-".
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

2 страниц V  1 2 >
Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 9:57

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru