IPB

Здравствуйте, гость ( Вход | Регистрация )

> Сумма ряда с точностью до....
lexx007
сообщение 28.2.2009, 13:42
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 136
Регистрация: 30.3.2008
Город: Оренбург
Учебное заведение: ОГУ
Вы: студент



Здравствуйте, подскажите пожалуйста. Необходимо найти Сумму ряда с точностью до а) Е=0,001 б) Е=0,01.

а)Сумма от n=1 до бескон. ((-1)^(n+1))*n/(2n-1)^2

Чтобы найти эту сумму с точностью до Е=0,001 необходимо решить неравенство, если я правильно понимаю должно быть так Аn+1<=0.001

((-1)^(n+2))*(n+1)/(2n+1)^2 <= 0.001 или же (n+1)/(2n+1)^2 <=0.001

б) Сумма от n=1 до бескон. 1/(9n-7)^2 .Так же?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
venja
сообщение 28.2.2009, 15:15
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Цитата(lexx007 @ 28.2.2009, 18:42) *

Здравствуйте, подскажите пожалуйста. Необходимо найти Сумму ряда с точностью до а) Е=0,001 б) Е=0,01.

а)Сумма от n=1 до бескон. ((-1)^(n+1))*n/(2n-1)^2

Чтобы найти эту сумму с точностью до Е=0,001 необходимо решить неравенство, если я правильно понимаю должно быть так Аn+1<=0.001

((-1)^(n+2))*(n+1)/(2n+1)^2 <= 0.001 или же (n+1)/(2n+1)^2 <=0.001

б) Сумма от n=1 до бескон. 1/(9n-7)^2 .Так же?


а) Ряд знакочередующийся, поэтому остаток ряда по модулю не превосходит МОДУЛЯ первого отброшенного члена. Поэтому количество слагаемых n определяется их неравенства

|Аn+1|<E

б) Не знаю, поймете ли?
Ряд положительный. Можно попробовать так. Если дан положительный ряд (сумма от 1 до 00) f(n),
причем функция f(x) убывающая, то из геометрического смысла (площадь) интеграла можно вывести,
что остаток ряда (сумма от n+1 до 00) f(n) не превосходит несобственного интеграла
(интеграл от n до 00) f(x) dx.
Поэтому для определения нужного n надо решить неравенство
(интеграл от n до 00) f(x) dx < E
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 21:41

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru