![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
lolik |
![]()
Сообщение
#1
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 73 Регистрация: 25.3.2007 Из: Подольск Город: Москва ![]() |
уравнение (1+y^2)dx=(4+x^2)dy
общее решение y=tg(0,5arctg(x/2) + C) а как определить особое решение? |
![]() ![]() |
tig81 |
![]()
Сообщение
#2
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
А как задание полностью звучит?
|
lolik |
![]()
Сообщение
#3
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 73 Регистрация: 25.3.2007 Из: Подольск Город: Москва ![]() |
|
venja |
![]()
Сообщение
#4
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
|
lolik |
![]()
Сообщение
#5
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 73 Регистрация: 25.3.2007 Из: Подольск Город: Москва ![]() |
|
venja |
![]()
Сообщение
#6
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
Н.М. Матвеев Обыкновенные дифференциальные уравнения (1996 год) с. 57 , упр. №19
В Вашем случае вообще все просто. Для правой части f(x,y)=(1+y^2)/(1+x^2) cама она и частная производная df/dy=2y/(1+x^2) непрерывны во всей координатной плоскости. Поэтому для любой точки плоскости условия теоремы Пикара выполнены, а потому через любую точку проходит ЕДИНСТВЕННОЕ решение данного уравнения. Поэтому особых решений нет. |
lolik |
![]()
Сообщение
#7
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 73 Регистрация: 25.3.2007 Из: Подольск Город: Москва ![]() |
спасибо за разъяснение
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 9:27 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru