![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
ustas |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 17 Регистрация: 14.1.2009 Город: СПб Учебное заведение: СПбГПУ ![]() |
Дана цепь Маркова с множеством состояний {1, 2, 3}, матрицей переходных вероятностей (Pij) и стационартным распределением ПИj. Показать, что ели P11=P22=P33=0 и ПИ1=ПИ2=ПИ3=1/3, то P12=P23=P31 и P13=P21=P32.
Логично было бы сказать, что элементы вектора ПИ - совственные значения матрицы Р и пытаься составить какие-то уравнения. Может я и туплю где-то, но у меня это чет не очень получается... |
![]() ![]() |
ustas |
![]()
Сообщение
#2
|
Школьник ![]() Группа: Продвинутые Сообщений: 17 Регистрация: 14.1.2009 Город: СПб Учебное заведение: СПбГПУ ![]() |
ПИ^T*Р=(1/3*(P12+P31);1/3*(P21+P32);1/3*(P13+P23)) и, как я понимаю, приравниваем к ПИ^Т, т.е. к вектору (1/3, 1/3 , 1/3), отсюда можно сделать вывод, что, например, 1-й элемент 1-го вектора равен 1-му элементу 2-го вектора, т.е сначала мы получили равенство: (1/3*(P12+P31);1/3*(P21+P32);1/3*(P13+P23)) = (1/3, 1/3 , 1/3), затем приравниваем элементы и получаем систему:
P12+P31=1 P21+P32=1 P13+P23=1 так??? |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 22:09 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru