![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
ustas |
![]()
Сообщение
#21
|
Школьник ![]() Группа: Продвинутые Сообщений: 17 Регистрация: 14.1.2009 Город: СПб Учебное заведение: СПбГПУ ![]() |
Дана цепь Маркова с множеством состояний {1, 2, 3}, матрицей переходных вероятностей (Pij) и стационартным распределением ПИj. Показать, что ели P11=P22=P33=0 и ПИ1=ПИ2=ПИ3=1/3, то P12=P23=P31 и P13=P21=P32.
Логично было бы сказать, что элементы вектора ПИ - совственные значения матрицы Р и пытаься составить какие-то уравнения. Может я и туплю где-то, но у меня это чет не очень получается... |
![]() ![]() |
ustas |
![]()
Сообщение
#22
|
Школьник ![]() Группа: Продвинутые Сообщений: 17 Регистрация: 14.1.2009 Город: СПб Учебное заведение: СПбГПУ ![]() |
ясно
в итоге мы получаем ПИ*Р=(1/3*(P12+P31);1/3*(P21+P32);1/3*(P13+P23)) и как бы все, что мы можем получить от перемножения:( |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 28.5.2025, 3:51 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru