IPB

Здравствуйте, гость ( Вход | Регистрация )

> найти координаты точки,расположенной на параболе
syshkinsin
сообщение 23.12.2008, 14:09
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 23.12.2008
Город: санкт-петербург
Учебное заведение: спбгпу
Вы: студент



в точке Р, лежащей на параболе y^2=2px, проведена к этой параболе нормаль. Каковы должны быть координаты Р, чтобы отрезок нормали заключенный внутри параболы, имел наименьшую длину?
Люди, у кого есть какие-нибудь здравые идеи поделитесь,второй день парюсь над заданием!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
syshkinsin
сообщение 27.12.2008, 17:51
Сообщение #2


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 23.12.2008
Город: санкт-петербург
Учебное заведение: спбгпу
Вы: студент



у меня получилось: y-y0=-((2px0)^1/2)*(x-x0))/2
я не понимаю что делать дальше,помогите,плизь
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 27.12.2008, 18:20
Сообщение #3


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(syshkinsin @ 27.12.2008, 19:51) *

у меня получилось: y-y0=-((2px0)^1/2)*(x-x0))/2
я не понимаю что делать дальше,помогите,плизь

Цитата(venja @ 27.12.2008, 6:08) *

Найдите координаты точек пересечения нормали с параболой, решив систему
y^2=2px
y=-(1/f'(а))*(x-а)+f(а)

какое решение системы получили?

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 7:52

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru