IPB

Здравствуйте, гость ( Вход | Регистрация )

> найти координаты точки,расположенной на параболе
syshkinsin
сообщение 23.12.2008, 14:09
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 23.12.2008
Город: санкт-петербург
Учебное заведение: спбгпу
Вы: студент



в точке Р, лежащей на параболе y^2=2px, проведена к этой параболе нормаль. Каковы должны быть координаты Р, чтобы отрезок нормали заключенный внутри параболы, имел наименьшую длину?
Люди, у кого есть какие-нибудь здравые идеи поделитесь,второй день парюсь над заданием!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
venja
сообщение 27.12.2008, 4:08
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Начните с поиска такой точки на верхней ветви параболы y=sqrt(2px).
Пусть Р - произвольная точка на ней с координатами (a,sqrt(2pa)).
Найдите уравнение нормали y=-(1/f'(а))*(x-а)+f(а) при f(x)=sqrt(2px).
Найдите координаты точек пересечения нормали с параболой, решив систему
y^2=2px
y=-(1/f'(а))*(x-а)+f(а)
Найдите расстояние (а удобнее даже квадрат расстояния) между полученными точками.
Найдите минимум по а полученного выражения (a>=0).
Учтите, что в ответ войдет и симметричная точка (a,-sqrt(2pa)).
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 4:51

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru