![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Bespamyatnaya |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 30 Регистрация: 17.4.2007 Город: Санкт- Петербург Учебное заведение: СПБИЭУ Вы: студент ![]() |
Пожалуйста, кто может, помогите!! Мне нужно срочно сдавать работу, но никак не могу врубиться в ряды.... Вот задание: а)Исследовать сходимость ряда: сумма по n от 1 до бесконечности (n/(3n-1))^(2n-1)
б)Определить область сходимости ряда: сумма по n от 1 до бесконечности (n*x^n)/((n^2)+1) Если кому- нибудь не сложно, то помогите, please! (IMG:style_emoticons/default/huh.gif) (Со школы все уже забылось, а без преподавателя мне никак не разобраться) |
![]() ![]() |
venja |
![]()
Сообщение
#2
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
б)Определить область сходимости ряда: сумма по n от 1 до бесконечности (n*x^n)/((n^2)+1) Сначала можно определить радиус сходимости R этого степенного ряда по формуле: R=lim |a(n)|/|a(n+1)| при n->00. В Вашем случае a(n)= n/((n^2)+1), для получения выражения для a(n+1) в выражении для a(n) вместо n подставьте n+1 . Думаю, будет R=1. Поэтому ИНТЕРВАЛ СХОДИМОСТИ есть интервал (-R, R). Область сходимости состоит из интервала сходимости и, возможно, граничных точек R и (-R). Принадлежность этих точек области сходимости проверяется отдельно подстановкой этих значений в исходный ряд вместо х и исследованием сходимости получающегося числового ряда. |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 22:02 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru