IPB

Здравствуйте, гость ( Вход | Регистрация )

> Производная функции f(z), Нахождение производной функции по известной действительной части
RaiN17
сообщение 16.11.2008, 7:04
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 26
Регистрация: 24.5.2008
Город: Сахалинск
Вы: школьник



как представить в алгебраической форме комплексное выражение
e^(-y)*(-sinx+icosx)

Такое выражение получилось, при попытке найти производную функции f'(z) по известной действительной части u=e^(-y)*cosx,
f(0) = 1
Применял условия Коши-Римана (даламбера-Эйлера)...
Хотя возможно я не правильно пременил данное условие (IMG:style_emoticons/default/sad.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
RaiN17
сообщение 16.11.2008, 8:15
Сообщение #2


Школьник
*

Группа: Продвинутые
Сообщений: 26
Регистрация: 24.5.2008
Город: Сахалинск
Вы: школьник



(IMG:style_emoticons/default/smile.gif) Вспомнил, что i^2=-1
В итоге e^(-y)*(-sinx+icosx) превратилось в
i (cosx+i sinx)*e^(-y) = i *e^(-y + i x) = i*e^(i*z)

Если правильно, то можно ли это считать алгебраической формой записи? Там просто дальше по решению, нужно будет находить модуль функции f'(z) ... а с такой формой записи эт как то не понятно.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Руководитель проекта
сообщение 16.11.2008, 11:30
Сообщение #3


Руководитель проекта
******

Группа: Руководители
Сообщений: 3 189
Регистрация: 23.2.2007
Из: Казань
Город: Казань
Учебное заведение: КГУ
Вы: другое



Цитата(RaiN17 @ 16.11.2008, 11:15) *

i (cosx+i sinx)*e^(-y) = i *e^(-y + i x) = i*e^(i*z)

Думаю, это именно то, что вам надо было найти.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 27.5.2025, 20:42

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru