IPB

Здравствуйте, гость ( Вход | Регистрация )

> 2^n*x^n/(6^n+3^n)
OlegS
сообщение 3.11.2008, 20:29
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 3.11.2008
Город: Москва



Задача: Написать три первых члена степенного ряда по заданному общему члену an*x^n, найти интервал сходимости ряда и исследовать его сходимость на концах этого интервала: 2^n*x^n/(6^n+3^n).

Решение:
Три первых члена: а1*x=2*x/9; а2*x=4*x^2/45; а3*x=8*x^3/243.
Находим радиус сходимости ряда: R = lim (n->~) | 2^n/(6^n+3^n) / 2^(n+1)/(6^(n+1)+3^(n+1))| = |9/2|.
Получаем что ряд сходится при х Э (-9/2; 9/2).

Надеюсь все правильно сделал, дальше получается при x=9/2 => 9^n/(6^n+3^n)
и при x=-9/2 => (-9)^n/(6^n+3^n). Объясните пожалуйста как далее исследовать сходимость и что должно получиться??? Если вдруг сразу решение напишите, то пожалуйста с объяснением почему!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Тролль
сообщение 3.11.2008, 20:46
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Предел, по-моему, неправильно найден.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
OlegS
сообщение 3.11.2008, 21:48
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 12
Регистрация: 3.11.2008
Город: Москва



a_n/a_{n + 1} = 2^n/(6^n+3^n) / 2^(n+1)/(6^(n+1)+3^(n+1)) и что дальше я честно не знаю))) Чайник я...
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Тролль
сообщение 3.11.2008, 22:04
Сообщение #4


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(OlegS @ 4.11.2008, 0:48) *

a_n/a_{n + 1} = 2^n/(6^n+3^n) / 2^(n+1)/(6^(n+1)+3^(n+1)) и что дальше я честно не знаю))) Чайник я...


a_n = 2^n/(6^n + 3^n) = 2^n/(3^n * 2^n + 3^n) = 2^n/((3^n * (2^n + 1)) =
= (2/3)^n/(2^n + 1)
Тогда
a_n/a_{n + 1} = ((2/3)^n/(2^n + 1))/((2/3)^(n + 1)/(2^(n + 1) + 1)) =
= 3/2 * (2^(n + 1) + 1)/(2^n + 1) = 3/2 * (2 * 2^n + 1)/(2^n + 1) =
= 3/2 * 2^n * (2 + 1/2^n)/(2^n * (1 + 1/2^n)) =
= 3/2 * (2 + 1/2^n)/(1 + 1/2^n) -> 3/2 * (2 + 0)/(1 + 0) = 3 при n -> 00.
R = 3.
|x| < 3.
При x = 3 или x = -3 получаем ряды
summa 6^n/(6^n + 3^n) и summa (-6)^n/(6^n + 3^n)
Эти ряды расходятся, так как не выполнен необходимый признак сходимости ряда
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 27.5.2025, 19:20

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru