IPB

Здравствуйте, гость ( Вход | Регистрация )

> исследовать на равномерную сходимость
elena2001
сообщение 10.10.2008, 14:16
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 10.10.2008
Город: Москва



Исследовать на равномерную сходимость ряд: сумма n от 1 до бесконечности
arctg((2x)/((x^2+n^3)^(1/2))). Наверное, надо использовать признак Вейерштрасса, только не пойму с каким рядом сравнивать. Помогите, пожалуйста.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Тролль
сообщение 11.10.2008, 17:26
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(elena2001 @ 10.10.2008, 18:16) *

Исследовать на равномерную сходимость ряд: сумма n от 1 до бесконечности
arctg(2x/(x^2+n^3)). Наверное, надо использовать признак Вейерштрасса, только не пойму с каким рядом сравнивать. Помогите, пожалуйста.


Лучше немного по другому записать и рассмотреть случаи:
1) х = 0 => тогда все ясно
2) x > 0 =>
a^2 + b^2 >= 2ab, где ab > 0
Тогда 1/(a^2 + b^2) <= 1/(2ab)
Получаем, что
arctg 2x/(x^2 + n^3) <= arctg 2x/(2x * n^(3/2)) = arctg 1/n^(3/2)
А этот ряд сходится.
3) x < 0 =>
a^2 + b^2 >= -2ab, где ab < 0
Тогда
1/(a^2 + b^2) <= 1/(-2ab)
Получаем, что
arctg 2x/(x^2 + n^3) <= arctg 2x/(-2x * n^(3/2)) = -arctg 1/n^(3/2)
Ряд сходится.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
elena2001
сообщение 11.10.2008, 21:19
Сообщение #3


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 10.10.2008
Город: Москва



Цитата(Тролль @ 11.10.2008, 17:26) *

Лучше немного по другому записать и рассмотреть случаи:
1) х = 0 => тогда все ясно
2) x > 0 =>
a^2 + b^2 >= 2ab, где ab > 0
Тогда 1/(a^2 + b^2) <= 1/(2ab)
Получаем, что
arctg 2x/(x^2 + n^3) <= arctg 2x/(2x * n^(3/2)) = arctg 1/n^(3/2)
А этот ряд сходится.
3) x < 0 =>
a^2 + b^2 >= -2ab, где ab < 0
Тогда
1/(a^2 + b^2) <= 1/(-2ab)
Получаем, что
arctg 2x/(x^2 + n^3) <= arctg 2x/(-2x * n^(3/2)) = -arctg 1/n^(3/2)
Ряд сходится.

Большое спасибо!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 21:38

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru