IPB

Здравствуйте, гость ( Вход | Регистрация )

> исследовать на равномерную сходимость
elena2001
сообщение 10.10.2008, 14:16
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 10.10.2008
Город: Москва



Исследовать на равномерную сходимость ряд: сумма n от 1 до бесконечности
arctg((2x)/((x^2+n^3)^(1/2))). Наверное, надо использовать признак Вейерштрасса, только не пойму с каким рядом сравнивать. Помогите, пожалуйста.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Тролль
сообщение 10.10.2008, 18:21
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(elena2001 @ 10.10.2008, 18:16) *

Исследовать на равномерную сходимость ряд: сумма n от 1 до бесконечности
arctg((2x)/((x^2+n^3)^(1/2))). Наверное, надо использовать признак Вейерштрасса, только не пойму с каким рядом сравнивать. Помогите, пожалуйста.


arctg (2x) < pi/2
1/((x^2 + n^3)^(1/2)) <= 1/(n^3)^(1/2) = 1/n^(3/2).
Получаем, что исходный ряд <= pi/2 * 1/n^(3/2) => ряд сходится равномерно при действительных х.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 28.5.2025, 2:16

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru