IPB

Здравствуйте, гость ( Вход | Регистрация )

> Задачка), Линейные операторы
Unnamed
сообщение 1.6.2008, 16:46
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 1.6.2008
Город: Ижевск
Вы: студент



Найдите собственные числа и собственные векторы оператора сдвига в пространстве многочленов степени не выше 2. Докажите, что оператор сдвига - нильпотентный.

Я составил матрицу линейного оператора, но неуверен что правильно сделал это (IMG:style_emoticons/default/blush.gif) , если не трудно напишите правильный ее вариант (IMG:style_emoticons/default/newconfus.gif)

моя матрица:
0 0 1
х 0 0
0 х^2 0

P.S.
Заранее спасибо.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Тролль
сообщение 1.6.2008, 20:58
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 2 964
Регистрация: 23.2.2007
Город: Москва
Учебное заведение: МГУ



Цитата(Unnamed @ 1.6.2008, 20:46) *

Найдите собственные числа и собственные векторы оператора сдвига в пространстве многочленов степени не выше 2. Докажите, что оператор сдвига - нильпотентный.

Я составил матрицу линейного оператора, но неуверен что правильно сделал это (IMG:style_emoticons/default/blush.gif) , если не трудно напишите правильный ее вариант (IMG:style_emoticons/default/newconfus.gif)

моя матрица:
0 0 1
х 0 0
0 х^2 0

P.S.
Заранее спасибо.


Ну если я ошибаюсь, то решение выглядит примерно так:
в пространстве многочленов базис будет e1 = 1, e2 = x, e3 = x^2
A(e1) = x = 0 * e1 + 1 * e2 + 0 * e3
A(e2) = x^2 = 0 * e1 + 0 * e2 + 1 * e3
A(e3) = 1 = 1 * e1 + 0 * e2 + 0 * e3
Тогда матрица оператора имеет вид
0 0 1
A = 1 0 0
0 1 0

Несложно проверить нильпотентность: A^3 = E.
Ну а собственные числа и векторы уже не сложно.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 16:11

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru