![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Katushas |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 39 Регистрация: 7.2.2008 Город: Сургут ![]() |
Подскажите пожалуйста как это решается?
Дана система векторов a1, a2 , a3 , a4 , a5 , a6 в которой a3(0,1,1,2), a4(1,1,1,3) , a4(1,0,-2,-1), a6(1,0,1,2) . Дополнить линейно независимую часть a1, a2 до базиса системы векторов a1, a2 , a3 , a4 , a5 , a6 и все векторы, не вошедшие в базис, разложить по базисуa1(9,11,-1,19), a2(5,3,-5,3) |
![]() ![]() |
tig81 |
![]()
Сообщение
#2
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
Подскажите пожалуйста как это решается? Дана система векторов a1, a2 , a3 , a4 , a5 , a6 в которой a3(0,1,1,2), a4(1,1,1,3) , a4(1,0,-2,-1), a6(1,0,1,2) . Дополнить линейно независимую часть a1, a2 до базиса системы векторов a1, a2 , a3 , a4 , a5 , a6 и все векторы, не вошедшие в базис, разложить по базисуa1(9,11,-1,19), a2(5,3,-5,3) Т.е. вам надо из указанной системы векторов a3 , a4 , a5 , a6 выбрать линейно независимые. Как можно поступить, составить матрицу из координат заданных векторов и найти ее ранг, который будет = количеству линейно независимых векторов. |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 16:13 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru