![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Маньфа |
![]()
Сообщение
#1
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 58 Регистрация: 26.3.2007 Город: Москва Учебное заведение: МГПУ, РГГУ Вы: студент ![]() |
Опять никак не пойму, что с ним делать (IMG:style_emoticons/default/no.gif) !
Summ (arctg(x+1)/((1+n)^(1/7))) Спасибо (IMG:style_emoticons/default/smile.gif) |
![]() ![]() |
Dimka |
![]()
Сообщение
#2
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Попробуйте по интегральному признаку (при arctan(x)=const)
int(n=1..беск arctan(x+1)/(n+1)^(1/7))dn = arctan(x+1) ((7/6)(n+1)^(6/7)) = беск расходится при любом x. |
venja |
![]()
Сообщение
#3
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 3 615 Регистрация: 27.2.2007 Город: Екатеринбург Вы: преподаватель ![]() |
Попробуйте по интегральному признаку (при arctan(x)=const) int(n=1..беск arctan(x+1)/(n+1)^(1/7))dn = arctan(x+1) ((7/6)(n+1)^(6/7)) = беск расходится при любом x. Немного не так. Надо отдельно рассмотреть случай х=-1, когда арктангенс обращается в 0. При х=-1 получается ряд из нулей, который сходится. Для всех других х я бы вынес арктангенс за знак ряда (от n он независит). В этом случае легко доказать, что исходный ряд сходится только если сходится ряд 1/(n+1)^(1/7) А этот ряд расходится. Доказать это можно по интегральному признаку (как уже советовали) или по признаку сравнения в пред. форме, сравнивая с 1/n^(1/7) |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 20:00 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru