IPB

Здравствуйте, гость ( Вход | Регистрация )

> Разложение функции в ряд Тейлора и Маклорена
miska
сообщение 18.2.2008, 12:05
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 17.2.2008
Город: Москва
Учебное заведение: МАДИ
Вы: студент



Не смог разложить функцию f(x)=1/(5x+15)^(1/2) в окрестности т х0=-2
На самом деле я ее разложил путем нахождения производных и подстановкой в формулу ряда Тейлора.
Преподаватель сказал, что так поступать нельзя, потому что по первым n членам нельзя установить как ведет себя функция(или ряд, точно не помню) и нужно применять формулу разложения функции f(x)=(1+x)^m

Я в некотором замешательстве теперь. Почему можно раскладывать ф-ии e^x, sin(x)^2, Ln (x + (x^2+2)^1/2), а 1/(5x+15)^(1/2) нельзя?

ЗЫ. Разложение функции sin(x)^2 и ( cos(x)^2 ) по степени x затруднений не вызывает; делаем замену sin(x)^2=(1/2)*1-cos(2x) (cos(x)^2=(1/2)*1+cos(2x)) и заменяем cos(2x) разложением в ряд Маклорена . Но вот с разложением cos(x)^2 по степени (x-pi/4) проблемы. Подскажите ход решения пожалуйста.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Black Ghost
сообщение 18.2.2008, 20:09
Сообщение #2


Аспирант
***

Группа: Активисты
Сообщений: 287
Регистрация: 1.3.2007
Город: Воронеж
Учебное заведение: ВГУ
Вы: студент



1/(5x+15)^(1/2) = 1/sqrt(5) * (1+ x+2) ^ (-1/2)=1/sqrt(5) * (1+t) ^ (-1/2)
t=x+2 (x->-2)
дальше раскладываем в ряд функцию (1+t) ^ (-1/2), t0=0
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 21:45

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru