IPB

Здравствуйте, гость ( Вход | Регистрация )

> Равномерная непрерывность y=xsin(1/x) на (0,00)
maxmax
сообщение 20.12.2007, 19:04
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 20.12.2007
Город: Вологда
Вы: студент



Помогите пожалуйста, с решением задачки: Исследовать на равномерную непрерывность функцию
y=xsin(1/x) на множестве (0, +бесконечность). Заранее спасибо.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
maxmax
сообщение 21.12.2007, 16:49
Сообщение #2


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 20.12.2007
Город: Вологда
Вы: студент



Мне кажется, что она является равномерно непрерывной.
По определению для любого E>0 существует д(Е) такое, что для любых x1,x2 из (0,+бесконечность) как только |x1-x2|<д(Е), то выполняется равенство |f(x1)-f(x2)|<E
Я оцениваю |f(x1)-f(x2)|=|x1sin(1/x1)-x2sin(1/x2)|<|x1+x2|<E
|x1-x2|<|x1+x2|<E
Далее требуется найти дельта д, зависящее от E, такое, чтобы если
|x1+x2|<E, то |x1-x2|<д. Мне кажется, что для этого справедливо неравенство
|x1-x2|<|x1+x2|<E<д(E).
То есть, д(E)=E+1. Но все это как-то расходится со всеми примерами из лекций и примерами из учебников Виногдадовой, Кудрявцева.

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 9:40

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru