![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() ![]() |
![]() |
eug |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Пользователи Сообщений: 2 Регистрация: 24.5.2010 Город: Москва Учебное заведение: МГУ Вы: преподаватель ![]() |
Когда волны определяются начальным смещением струны U(x,0)=f(x)
то при использовании ф-лы Даламбера с аргументами выходящими за границы струны x<0,x>L используется т.н. нечетное 2L-периодическое продолжение функции f(x). Как продолжать аналогичную функцию при задании профиля начальных скоростей psi(x)=du(x,t)/dx|t=0 ? (волны импульса)? На примере прямоугольного симметричного импульса d=0.25L Какой будет профиль волны импульса на рис ниже при t=0.625L/a ? Если вообще не учитывать периодическое продолжение нач импульса то будет так (IMG:http://s019.radikal.ru/i629/1306/95/327f86dc9890.jpg) Т.е. на концах амплитуда 0.375vL Если же учитывать четное продолжение то при t=0.625L/a ,будет видимо так (IMG:http://s56.radikal.ru/i151/1306/10/858cf8c87afd.jpg) Т.е. на концах амплитуда 0.75vL –получена за счет площади основного импульса (черный прямоуг)+ 0.5 площади продолженного импульса (пунктирный прямоугольник справа). но если учитывать четное продолжение, то амплитуды волн при at>>L будут неограниченно расти: A=mS где S-площадь импульса, m=[at/L] это видно и по последнему рис Но это значит что и энергия волны тоже неограниченно увеличивается-не может быть. Значит четное продолжение psi(x) неверно? тогда тоже нечетное продолжение? |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 13:23 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru