![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
sleeper |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 49 Регистрация: 22.5.2007 Из: Ижевск Город: Izhevsk ![]() |
Здрасте.
Вот такую задачу я не могу сделать: Доказать, что для любого счётного множества A={xn} существует число a такое что множество {xn+a} "*" A пусто, где "*" - пересечение. Всё бы было просто, если бы {xn} был бы просто последовательностью чисел, но {xn} может быть множеством рациональных чисел, и тогда чило между {xn+1} и {xn} не подберёш. Сказали что надо работать с "определением пересечения", что это за определение такое ? И что делать в этом конкретном примере? |
![]() ![]() |
AlexDemche |
![]()
Сообщение
#2
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 83 Регистрация: 18.3.2007 Город: Казань Учебное заведение: Казанский Государственный Университет Вы: преподаватель ![]() |
Ну во первых, я так понимаю, что x_n - это множество чисел, иначе не определена (вообще говоря) операция сложения с числом. Если это множество чисел, то какими могут быть эти числа? любыми или рациональными или иррациональными, например? И каким должно быть число a - любым или принадлежащим множеству A.
Если число любое, то проблема которую вы указали легко решается - пусть А - множество рациональных чисел, тогда множество A* = {x_n + корень из двух} не имеет пересечения с A. |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 20:26 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru