![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Paha-rzn |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 16 Регистрация: 23.5.2010 Город: Rzn Учебное заведение: РГРТУ Вы: студент ![]() |
f(x,y)=xy-x^2-y^2+2x-y+3
(Z)'_x = y-2x+2 (Z)'_y = x-2y-1 Приравнивая оба уравнения к нулю и решая систему уравнений нашел x=-5/3 , y=-4/3. т.е. М(-5/3,-4/3) - стационарная точка. Далее беру производную (Z)''_xx=-2 (Z)''_yy=-2 Что делать дальше? Как найти экстремумы? |
![]() ![]() |
Paha-rzn |
![]()
Сообщение
#2
|
Школьник ![]() Группа: Продвинутые Сообщений: 16 Регистрация: 23.5.2010 Город: Rzn Учебное заведение: РГРТУ Вы: студент ![]() |
А если бы АС-В^2 была бы меньше или равна нулю, то функция не достигала бы экстремума?
Т.е. мне можно сделать в примере вывод, типа т. М(1,0) - точка экстремума, и т.к. А<0, то она точка максимума!? |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 27.5.2025, 19:01 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru