IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> Стереометрия, Вписанный шар в пирамиду
DeMoN 911
сообщение 15.3.2007, 18:35
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 145
Регистрация: 15.3.2007
Из: Ростов-на-Дону
Город: Ростов-на-Дону
Учебное заведение: ФВТ
Вы: школьник



Подскажите методику решения:
Условие: Сторона основания правильной треугольной пирамиды равна a. Высота пирамиды равна h. Найдите обьем вписанногов пирамиду шара (но не в основание пирамиды!!!).

Подскажите, как найти и чему будет равен радиус вписанного шара.Заранее благодарю!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
A_nn
сообщение 15.3.2007, 18:41
Сообщение #2


Ассистент
****

Группа: Преподаватели
Сообщений: 720
Регистрация: 26.2.2007
Город: СПб
Вы: преподаватель



Было бы странно, если бы шар был вписан в основание (IMG:style_emoticons/default/huh.gif) .

Надо посчитать объем пирамиды двумя способами - сначала обычным (через высоту и площадь основания). А потом через радиус вписанного шара (r*S/3, где S - это площадь полной поверхности пирамиды).

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
DeMoN 911
сообщение 15.3.2007, 19:11
Сообщение #3


Студент
**

Группа: Продвинутые
Сообщений: 145
Регистрация: 15.3.2007
Из: Ростов-на-Дону
Город: Ростов-на-Дону
Учебное заведение: ФВТ
Вы: школьник



Подскажите, откуда взялась формула V=(r*S)/3 ?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
A_nn
сообщение 15.3.2007, 19:13
Сообщение #4


Ассистент
****

Группа: Преподаватели
Сообщений: 720
Регистрация: 26.2.2007
Город: СПб
Вы: преподаватель



Оттуда же, откуда берется формула площади треугольника через радиус вписанной окружности - разбиваем пирамиду на маленькие пирамидки, вершинами которых служит центр вписанной сферы, а основаниями - грани.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 22:44

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru