Здравствуйте. Пытаюсь вычислить предел с помощью правила Лопиталя lim(x->0)((x*ctgx-1)/x^2). Я применила правило Лопиталя для той дроби, которая была так как есть (пришлось применить дважды), получился предел выражения x+x*ctgx-2. Можно ли применить правило Лопиталя в данном случае без предварительного приведения к виду 0/0 или оо/оо? Пробовала привести к виду 0/0, получается что-то невообразимое. И если можно, то чему же тогда будет равен предел x*ctgx при x->0? Заранее спасибо, очень надеюсь на вашу помощь.
куда дальше двигаться - ума не приложу. Или может я не в том направлении начала решать?
во-первых, вы неправильно нашли производные.
производная от (1-ctg[x]) не равна 1/cos^2[x]. это получается только в случае замены этого выражения на тангенс, а потом дифференцирования.
аналогично замените и знаменатель на тангенс, затем ПРАВИЛЬНО его продифференцируйте и перейдите к двухэтажной дроби.
предел затем красиво рассчитывается при делении числителя и знаменателя на синус
cuore, спасибо большое за подсказку! Предел наконец-то мне поддался! Уррра!
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)