Цитата(Nat111 @ 15.2.2009, 12:25) *

проверка:

в исходное уравнение (x^2)y'+xy+1=0 подставила y=-((ln(x)/x)-(c2/x)).
получилось
(x^2)*(-((ln(x)/x)-(c2/x)))'+x*(-((ln(x)/x)-(c2/x)))+1=0

как вычислить вот эту производную (-((ln(x)/x)-(c2/x)))'=...?


вычислили производную (-((ln(x)/x)-(c2/x)))'=-(1-ln(x))/x^2-(-(c^2/x^2))=-(1-ln(x))/x^2+(c^2/x^2)

Цитата(Nat111 @ 15.2.2009, 12:25) *

в исходное уравнение (x^2)y'+xy+1=0 подставила y=-((ln(x)/x)-(c2/x)).
получилось
(x^2)*(-((ln(x)/x)-(c2/x)))'+x*(-((ln(x)/x)-(c2/x)))+1=0


после вычисления производной получилось:
(x^2)*(-(1-ln(x))/x^2+(c^2/x^2))+x*(-((ln(x)/x)-(c2/x)))+1=0

а дальше что делать? скобки раскрывать? dry.gif