y=uv, y'=u'v+v'u
Получаем уравнение
u'v+v'u+[(1-2x)/x^2]uv=1
u'v+v'u+[(1-2x)/x^2]uv=1
u'v+u(v'+[(1-2x)/x^2]v)=1
v'+[(1-2x)/x^2]v=0
dv/v=[(2x-1)/x^2]dx
lnv=2lnx+1/x
v=(x^2)*e^(1/x)
(du/dx)*(x^2)*e^(1/x)=1
du=1/[ (x^2)*e^(1/x) ]dx
u=1/e^(1/x)+C
y=uv=[(x^2)*e^(1/x)]*[1/e^(1/x)+C]=x^2*[1+C*e^(1/x)]