IPB

Здравствуйте, гость ( Вход | Регистрация )

> y‘+y/x=e^(2x)*y^(-3)
Аэлита
сообщение 21.5.2011, 11:38
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 23
Регистрация: 20.5.2011
Город: Краснодар
Учебное заведение: КубГАУ



Линейное дифф.уравнение
y‘+y/x=e^(2x)*y^(-3)

решение:
y=u*v; y‘=u‘v+uv‘
u‘v+uv‘+uv/x= e^(2x)*y^(-3)
u‘v+u(v‘+v/x)= e^(2x)*y^(-3)
v‘+v/x=0
u‘v= e^(2x)*y^(-3)

v‘+v/x=0
v‘=-v/x
…….таким образом, решив левую часть, я получила ∫dv/v=∫-dx/x →lnv=-lnx →v=1/x^2
Подставив в правую часть, я получила u‘x^(-2)= e^(2x)*y^(-3) И ДАЛЬШЕ НЕ ЗНАЮ КАК РЕШИТЬ ПРАВУЮ ЧАСТЬ((((((((((((((( ПОМОГИТЕ МНЕ ПОЖАЛУЙСТА!

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 5:09

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru