![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() ![]() |
![]() |
borzoni |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
Здравтсвуйте, у меня возникла небольшая проблемка:
скорее даже не в задачи... В общем так, дан int(sin(((5*x)/2)^2)) dx границы от 0 до 0,4 Его нужно вычислить с заданой точностью до 0,001 я вычислил, получилось =0,1238= 0,124 Пишу...Погрешность по теореме Лейбница меньше первого отброшенного члена abs®<0,0003<0,001. Преподаватель написал мне -А где доказана её применимость и не хочет принимать. Я так понимаю надо исследовать ряд ((-1)^n) *((X^(2n-1))/((2n+1)!)) но у меня получилось, что этот ряд сходиться абсолютно. по Даламберу=0<1.Что предпренимать дальше? Я в тупике... Заранее благодарен за помощь. P.S Заодно не подскажите, пожалуйста, одну вещь. Задание было найти сумму ряда (3n-1)/(n*((n^2)-1)) ,начиная с третьего члена- Я получил S(n-2)=(здесь преподаватель поставил вопрос)=1/3 +1/2+1/3....-2/(n+1)-детали неважны. Далее он написал S(2)=S(n-2) при n=4 =?.. Я так понял это значит так как нам надо найти сумму ряда без первых двух членов, но при n=4 получиться что S(2)=S(n-2), как бы преодолеть это несоответствие, может я как-то не так записал.... Кстати, предел от S(n-2) у меня получился 25/84, он его тоже подчеркнул, хотя до этого никаких ошибок не нашел. |
Dimka |
![]()
Сообщение
#2
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
sin(((5*x)/2)^2)) нужно разложить в ряд Маклорена, проинтнгрировать, после этого найти область сходимости полученного ряда, интервал интегрирования 0.....0,4 должен входить в область сходимости. Если это произошло, то применимость данного разложения к вычислению данного интеграла доказана и можете брать сумму первых n членов разложения для вычисления определенного интеграла с заданной степенью точности.
|
borzoni |
![]()
Сообщение
#3
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
я всё это сделал, я же написал скорее проблема даже не в самом ответе или решения задачи, а
в этой фразе Погрешность по теореме Лейбница меньше первого отброшенного члена abs R<0,0003<0,001. От меня требуют доказать применимость теоремы Лейбница, хотя я лично не понимаю к чему это..., но и не могу доказать, поэтому и обратился за помощью. По правде говоря у меня странный преподаватель, если не сказать больше... |
Dimka |
![]()
Сообщение
#4
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
|
borzoni |
![]()
Сообщение
#5
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
мало того, что он чокнутый, так он ничего и не говорит, за исключением того, что он написал; орёт:" я тебе всё написал"
единственное в этом рз, что он написал -"а где доказана её применимость?"...(наверное, краткость -сестра таланта. (IMG:style_emoticons/default/wink.gif) ) Я в ступоре... тогда вопрос если ряд сходится абсолютно, выполняется ли теорема Лейбница? (ряд ((-1)^n) *((X^(2n-1))/((2n+1)!)) или что-то другое нужно сделать для этого ряда, чтобы выполнялась т.Лейбница?) или может быть у кого-нибудь есть идеи насчёт второго вопроса про сумму ряда (3n-1)/(n*((n^2)-1))?(вверху). |
Dimka |
![]()
Сообщение
#6
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Ты в каком университете учишься?
|
borzoni |
![]()
Сообщение
#7
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
Орловский государственный технический университет
специальность - Информационные системы и технологии |
Dimka |
![]()
Сообщение
#8
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Случайно Вас там не Павел Петрович математике учит?
|
borzoni |
![]()
Сообщение
#9
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
в точку (IMG:style_emoticons/default/yes.gif)
|
Dimka |
![]()
Сообщение
#10
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Аврашков тяжелый сам по себе человек, но достаточно соображающий. Так что Вам придется к нему походить несколько раз. Все зависит от его настроения.
|
borzoni |
![]()
Сообщение
#11
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
это я уже понял, опыт есть, правда такое впечатление, что с возрастом настроения у него всё меньше и меньше... Но про второй вопрос я разобрался(S(n-2)), а вот про первый я так начинаю понимать, что ему просто нужно исследовать на признак Лейбница ряд, который получается после интегрирования - вроде так. Не математика, а психология какая-то...
Ладно тогда вопрос по делу: каков общий член данного ряда ((5/2)^2) ((2/5)^3)*(1/3) - ((5/2)^6) ((2/5)^7)*((1/3)!) + ((5/2)^10) ((2/5)^11)*((1/5)!) -.... Очень нужно Ну а насчёт Аврашкова, он - замечательный математик, но как преподаватель - никого хуже не видел.... |
Dimka |
![]()
Сообщение
#12
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
это я уже понял, опыт есть, правда такое впечатление, что с возрастом настроения у него всё меньше и меньше... Это потому, что студенты с каждым годом все хуже и хуже. Разложение в ряд Маклорена для синуса с аргументом х sin [x]=SUM {(-1)^(n-1)*(x)^(2n-1)}/(2n-1)! разложение синуса с аргументом (5x/2)^2 sin [(5x/2)^2]=SUM {(-1)^(n-1)*[(5x/2)^2]^(2n-1)}/(2n-1)! Теперь интегрируй по х общуюю формулу, учитывая, что n - постоянная, х - переменная. Получишь новый ряд с искомым общим членом. Новый ряд нужно исследовать на сходимость, т.е. найти область сходимости. Если область сходимости накрывает интервал 0....0,4, то ряд для вычисления интеграла использовать можно, т.е. это является доказательством. Если интервал 0...0,4 не вхоит в область сходимости, то пользоваться разложением нельзя. |
borzoni |
![]()
Сообщение
#13
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
не исключено, что студенты действительно стали хуже, но думаю, что просто надо быть терпеливее, иногда гораздо полезнее обьяснить в полном объёме доступным языком, а не создавать из ошибки студента "уравнения с n-известными" своими вопросами, больше сбивающими, чем помогающими прояснить ситуацию.
Насчёт Вашего ответа, спасибо за общий ход решения, но я это всё делал, а вопрос мой истекает из того, что у меня привычка в таких примерах не писать ряд как общий член, а расписывать его последовательностью, но всё равно большое спасибо хотя бы за разговор. |
Dimka |
![]()
Сообщение
#14
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Я думаю, что Ваши пожелания в отношениии преподавания примут во внимание все (кроме меня) преподы форума, работающие в ВУЗах России.
|
borzoni |
![]()
Сообщение
#15
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
всё же интересно - почему не Вы? Меня очень заинтриговала эта фраза...
|
Dimka |
![]()
Сообщение
#16
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Я не преподаватель и не работаю в ВУЗе.
|
borzoni |
![]()
Сообщение
#17
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
Красиво, а главное логично...
А откуда вы знаете Павла Петровича? если не секрет (IMG:style_emoticons/default/smile.gif) |
Dimka |
![]()
Сообщение
#18
|
Доцент ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 4 925 Регистрация: 26.2.2007 Город: _ Вы: другое ![]() |
Я из того же города, что и Вы. Учился в том же университете, что и Вы.
|
borzoni |
![]()
Сообщение
#19
|
Школьник ![]() Группа: Продвинутые Сообщений: 37 Регистрация: 4.3.2007 Город: Орел ![]() |
понятно
|
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 16:24 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru