Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Ряды _ нахождение интеграла с заданной точностью

Автор: borzoni 16.9.2007, 10:21

Здравтсвуйте, у меня возникла небольшая проблемка:
скорее даже не в задачи...
В общем так, дан int(sin(((5*x)/2)^2)) dx границы от 0 до 0,4
Его нужно вычислить с заданой точностью до 0,001
я вычислил, получилось =0,1238= 0,124
Пишу...Погрешность по теореме Лейбница меньше первого отброшенного члена abs®<0,0003<0,001.
Преподаватель написал мне -А где доказана её применимость и не хочет принимать.
Я так понимаю надо исследовать ряд ((-1)^n) *((X^(2n-1))/((2n+1)!))
но у меня получилось, что этот ряд сходиться абсолютно. по Даламберу=0<1.Что предпренимать дальше?
Я в тупике...

Заранее благодарен за помощь.

P.S Заодно не подскажите, пожалуйста, одну вещь. Задание было найти сумму ряда
(3n-1)/(n*((n^2)-1)) ,начиная с третьего члена-
Я получил S(n-2)=(здесь преподаватель поставил вопрос)=1/3 +1/2+1/3....-2/(n+1)-детали неважны.
Далее он написал S(2)=S(n-2) при n=4 =?..
Я так понял это значит так как нам надо найти сумму ряда без первых двух членов, но при n=4 получиться что S(2)=S(n-2), как бы преодолеть это несоответствие, может я как-то не так записал....
Кстати, предел от S(n-2) у меня получился 25/84, он его тоже подчеркнул, хотя до этого никаких ошибок не нашел.

Автор: Dimka 16.9.2007, 15:44

sin(((5*x)/2)^2)) нужно разложить в ряд Маклорена, проинтнгрировать, после этого найти область сходимости полученного ряда, интервал интегрирования 0.....0,4 должен входить в область сходимости. Если это произошло, то применимость данного разложения к вычислению данного интеграла доказана и можете брать сумму первых n членов разложения для вычисления определенного интеграла с заданной степенью точности.

Автор: borzoni 16.9.2007, 17:38

я всё это сделал, я же написал скорее проблема даже не в самом ответе или решения задачи, а
в этой фразе Погрешность по теореме Лейбница меньше первого отброшенного члена
abs R<0,0003<0,001. От меня требуют доказать применимость теоремы Лейбница, хотя я лично не понимаю к чему это..., но и не могу доказать, поэтому и обратился за помощью. По правде говоря у меня странный преподаватель, если не сказать больше...

Автор: Dimka 16.9.2007, 17:52

Цитата(borzoni @ 16.9.2007, 21:38) *

По правде говоря у меня странный преподаватель, если не сказать больше...


"Чокнутый профессор"?
Ну тогда Вам нужно у него самого спросить, что он имел ввиду.

Автор: borzoni 16.9.2007, 18:45

мало того, что он чокнутый, так он ничего и не говорит, за исключением того, что он написал; орёт:" я тебе всё написал"
единственное в этом рз, что он написал -"а где доказана её применимость?"...(наверное, краткость -сестра таланта. wink.gif )
Я в ступоре...
тогда вопрос если ряд сходится абсолютно, выполняется ли теорема Лейбница?
(ряд ((-1)^n) *((X^(2n-1))/((2n+1)!)) или что-то другое нужно сделать для этого ряда, чтобы выполнялась т.Лейбница?)


или может быть у кого-нибудь есть идеи насчёт второго вопроса про сумму ряда (3n-1)/(n*((n^2)-1))?(вверху).

Автор: Dimka 16.9.2007, 20:02

Ты в каком университете учишься?

Автор: borzoni 17.9.2007, 3:49

Орловский государственный технический университет
специальность - Информационные системы и технологии

Автор: Dimka 17.9.2007, 8:23

Случайно Вас там не Павел Петрович математике учит?

Автор: borzoni 17.9.2007, 11:27

в точку yes.gif

Автор: Dimka 17.9.2007, 12:30

Аврашков тяжелый сам по себе человек, но достаточно соображающий. Так что Вам придется к нему походить несколько раз. Все зависит от его настроения.

Автор: borzoni 17.9.2007, 15:49

это я уже понял, опыт есть, правда такое впечатление, что с возрастом настроения у него всё меньше и меньше... Но про второй вопрос я разобрался(S(n-2)), а вот про первый я так начинаю понимать, что ему просто нужно исследовать на признак Лейбница ряд, который получается после интегрирования - вроде так. Не математика, а психология какая-то...


Ладно тогда вопрос по делу: каков общий член данного ряда ((5/2)^2) ((2/5)^3)*(1/3) - ((5/2)^6) ((2/5)^7)*((1/3)!) + ((5/2)^10) ((2/5)^11)*((1/5)!) -....
Очень нужно

Ну а насчёт Аврашкова, он - замечательный математик, но как преподаватель - никого хуже не видел....

Автор: Dimka 17.9.2007, 17:28

Цитата(borzoni @ 17.9.2007, 19:49) *

это я уже понял, опыт есть, правда такое впечатление, что с возрастом настроения у него всё меньше и меньше...


Это потому, что студенты с каждым годом все хуже и хуже.

Разложение в ряд Маклорена для синуса с аргументом х
sin [x]=SUM {(-1)^(n-1)*(x)^(2n-1)}/(2n-1)!
разложение синуса с аргументом (5x/2)^2
sin [(5x/2)^2]=SUM {(-1)^(n-1)*[(5x/2)^2]^(2n-1)}/(2n-1)! Теперь интегрируй по х общуюю формулу, учитывая, что n - постоянная, х - переменная. Получишь новый ряд с искомым общим членом. Новый ряд нужно исследовать на сходимость, т.е. найти область сходимости. Если область сходимости накрывает интервал 0....0,4, то ряд для вычисления интеграла использовать можно, т.е. это является доказательством. Если интервал 0...0,4 не вхоит в область сходимости, то пользоваться разложением нельзя.

Автор: borzoni 17.9.2007, 18:17

не исключено, что студенты действительно стали хуже, но думаю, что просто надо быть терпеливее, иногда гораздо полезнее обьяснить в полном объёме доступным языком, а не создавать из ошибки студента "уравнения с n-известными" своими вопросами, больше сбивающими, чем помогающими прояснить ситуацию.
Насчёт Вашего ответа, спасибо за общий ход решения, но я это всё делал, а вопрос мой истекает из того, что у меня привычка в таких примерах не писать ряд как общий член, а расписывать его последовательностью, но всё равно большое спасибо хотя бы за разговор.

Автор: Dimka 17.9.2007, 19:22

Я думаю, что Ваши пожелания в отношениии преподавания примут во внимание все (кроме меня) преподы форума, работающие в ВУЗах России.

Автор: borzoni 17.9.2007, 19:50

всё же интересно - почему не Вы? Меня очень заинтриговала эта фраза...

Автор: Dimka 17.9.2007, 20:01

Я не преподаватель и не работаю в ВУЗе.

Автор: borzoni 17.9.2007, 20:27

Красиво, а главное логично...
А откуда вы знаете Павла Петровича? если не секрет smile.gif

Автор: Dimka 18.9.2007, 5:16

Я из того же города, что и Вы. Учился в том же университете, что и Вы.

Автор: borzoni 18.9.2007, 11:30

понятно

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)