IPB

Здравствуйте, гость ( Вход | Регистрация )

> Исследовать на сходимость и равномерную сходимость функциональный ряд в указанном промежутке
Pavel1
сообщение 3.5.2009, 14:37
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 4
Регистрация: 14.12.2008
Город: Нижинск



Добрый вечер. К Вам огромная просьба помочь решить несколько рядов:

1) ∑ от (n=1) до ∞ (x^2*sin(n*sqrt(x)))/1+n^3*x^4 на [0; +∞]

2) ∑ от (n=1) до ∞ (sqrtx*cosnx)/n*(2nx^2+1) на [0; +∞]

3) ∑ от (n=1) до ∞ (x^2/1+(n^2)*(x^5))^2 на [-∞; +∞]

1) Самый первый ряд решил, получилось:

|(x^2*sin(n*sqrt(x)))/1+n^3*x^4|<=(x^2)/1+n^3*x^4.

Далее 1+(n^3) * (x^5)=>(2x^2)*(n^3/2), поэтому (x^2)/1+n^3*x^4<=(x^2)/2(x^2)*n^3/2<=1/2n^3/2

И получается что так как ряд от 1 до беск 1/2n^3/2 сх-ся, то по Вейерштрассу сх-ся исходный ряд (1). Надеюсь правильно!

2) Никак не могу определить каким признаком пользоваться 0_0. Опять таки же Вейерштрасса? С чем сравнивать? Не с 1/n^2 ?

3) Тут вообще ничего не могу понять. Так ли влияет общий квадрат всей скобки?

Заранее спасибо за ответы на вопросы и помощь! (IMG:style_emoticons/default/huh.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 13:46

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru