IPB

Здравствуйте, гость ( Вход | Регистрация )

> "Неполная степень" бинома в целой степени и ВТФ, Целое число есть сумма целых чисел, по меньшей мере бином. Значит, цел
Николай Лошкарёв
сообщение 28.4.2009, 8:54
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 1
Регистрация: 28.4.2009
Город: Днепропетровск
Вы: преподаватель



Всякое целое число в целой степени по сути есть сумма целых чисел. Будучи возведено в целую степень n, целое число становится однородным многочленом степени n. То, что целое число в целой степени может равняться сумме степеней целых чисел - следствие того, что оно само есть однородный многочлен степени 1.
Несомненно, что всякое целое число есть сумма минимум пары целых чисел - бином (a+(IMG:style_emoticons/default/cool.gif). Число слагаемых бинома в целой степени n определяется только степенью n и при степенях, больших 2, это число не менее 3. Стало быть, однородный многочлен целых чисел, имеющий число членов менее 3-х при всех целых степенях, больших 2, есть неполная степень целого числа, т. е. иррациональное число в степени однородного многочлена. Это и прелагал доказать П. Ферма в ВТФ.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 13:44

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru