![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
RaiN17 |
![]()
Сообщение
#1
|
Школьник ![]() Группа: Продвинутые Сообщений: 26 Регистрация: 24.5.2008 Город: Сахалинск Вы: школьник ![]() |
|
![]() ![]() |
tig81 |
![]()
Сообщение
#2
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
Если я все правильно понял то тут единственная особая точка z=0 так Цитата и это полюс первого порядка. Поправьте меня если я ошибаюсь. Или полюс 4 порядка, вот в этом я запутался... ((( ![]() Мне кажется, что это полюс третьего порядка. Для числителя f(z)=z-sinz точка z=0 - нуль первого порядка, тогда эту функцию можно записать в виде: f(z)=z*f1(z), причем f1(0)<>0. Тогда подынтегральная функция запишется в виде: z*f1(z)/2z^4=[f1(z)/2]/z^3. |
Руководитель проекта |
![]()
Сообщение
#3
|
Руководитель проекта ![]() ![]() ![]() ![]() ![]() ![]() Группа: Руководители Сообщений: 3 189 Регистрация: 23.2.2007 Из: Казань Город: Казань Учебное заведение: КГУ Вы: другое ![]() |
z=0 - полюс первого порядка.
|
tig81 |
![]()
Сообщение
#4
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
z=0 - полюс первого порядка. а почему? Где ошибка в моих рассуждениях? Все, нашла. Я просто не умею брать производную от f(z)=z-sinz. (IMG:style_emoticons/default/sad.gif) Тогда исправляюсь: f(z)=z^3*f1(z) Подынтегральная функция z^3*f1(z)/2z^4=[f1(z)/2]/z. Т.е. z=0 - простой полюс. |
Руководитель проекта |
![]()
Сообщение
#5
|
Руководитель проекта ![]() ![]() ![]() ![]() ![]() ![]() Группа: Руководители Сообщений: 3 189 Регистрация: 23.2.2007 Из: Казань Город: Казань Учебное заведение: КГУ Вы: другое ![]() |
Все, нашла. Я просто не умею брать производную от f(z)=z-sinz. (IMG:style_emoticons/default/sad.gif) Не ошибается тот, кто ничего не делает. По себе знаю (IMG:style_emoticons/default/smile.gif) Важно уметь признавать их. |
tig81 |
![]()
Сообщение
#6
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
Не ошибается тот, кто ничего не делает. По себе знаю (IMG:style_emoticons/default/smile.gif) Важно уметь признавать их. (IMG:style_emoticons/default/blush.gif) (IMG:style_emoticons/default/smile.gif) |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 11:17 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru