IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> вычислить для первого шара вероятность быть вынутым вторым
strassebahn
сообщение 13.2.2008, 16:56
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 5
Регистрация: 13.2.2008
Город: Ternopil
Учебное заведение: TDTI
Вы: другое



Помогите решить задачку:

В корзине 10 шаров. Вероятность появления каждого шара первым - p1,p2, .., p10. Поочерёдно выбираются все шары.
нужно вычислить для первого шара вероятность быть вынутым вторым.

наперёд большое спасибо, даже за совет ! Препод заел уже...
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Руководитель проекта
сообщение 13.2.2008, 17:09
Сообщение #2


Руководитель проекта
******

Группа: Руководители
Сообщений: 3 189
Регистрация: 23.2.2007
Из: Казань
Город: Казань
Учебное заведение: КГУ
Вы: другое



Цитата(strassebahn @ 13.2.2008, 19:56) *

Препод заел уже...

Так и здесь отвечающие далеко не все студенты...
А что вы показывали своему преподавателю?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
strassebahn
сообщение 13.2.2008, 17:16
Сообщение #3


Новичок
*

Группа: Продвинутые
Сообщений: 5
Регистрация: 13.2.2008
Город: Ternopil
Учебное заведение: TDTI
Вы: другое



Цитата(Руководитель проекта @ 13.2.2008, 18:09) *

Так и здесь отвечающие далеко не все студенты...
А что вы показывали своему преподавателю?


Я вообще то програмист, заочно учусь.

Преподу я пока не показал ничего, потому как не знаю ответа..
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
venja
сообщение 13.2.2008, 17:17
Сообщение #4


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Странное условие
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
strassebahn
сообщение 13.2.2008, 17:20
Сообщение #5


Новичок
*

Группа: Продвинутые
Сообщений: 5
Регистрация: 13.2.2008
Город: Ternopil
Учебное заведение: TDTI
Вы: другое



Цитата(venja @ 13.2.2008, 18:17) *

Странное условие


А почему странное?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
jelena
сообщение 13.2.2008, 23:27
Сообщение #6


Студент
**

Группа: Преподаватели
Сообщений: 226
Регистрация: 28.2.2007
Город: Opava, Czech Republic
Учебное заведение: МИТХТ
Вы: другое



Если задача с возвращением, то ничего странного - вероятность, что тот шар, который будет вынут первым, будет вынут и вторым. Правильно ли я поняла задание?

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
venja
сообщение 14.2.2008, 8:12
Сообщение #7


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Цитата(strassebahn @ 13.2.2008, 22:20) *

А почему странное?


Потому что я его не понимаю.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
strassebahn
сообщение 14.2.2008, 8:57
Сообщение #8


Новичок
*

Группа: Продвинутые
Сообщений: 5
Регистрация: 13.2.2008
Город: Ternopil
Учебное заведение: TDTI
Вы: другое



Нет, шары которые выбрали, назад не возвращаются.

Шары имеют разный вес, диаметр и пр, и вероятность для маленького шара быть вытянуть первым, отличается от вероятности большого шара быть вытянутым первым.

поочерёдно вынимаются все шары, без возвращения.

Есть 10 шаров с номерами 1,2..10. вынимают наугад один шар. вероятность быть вытянутым для первого шара - р1, для второго - р2,... для десятого - р10. То есть для каждого шара различная.

известно, что первым был вытянут не шар с номером 1..

Потом наугад вынимают следующий шар.

нужно подсчитать вероятность того, что вторым будет вынут шар с номером 1.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
venja
сообщение 14.2.2008, 9:55
Сообщение #9


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Цитата(strassebahn @ 14.2.2008, 13:57) *

Нет, шары которые выбрали, назад не возвращаются.

Шары имеют разный вес, диаметр и пр, и вероятность для маленького шара быть вытянуть первым, отличается от вероятности большого шара быть вытянутым первым.

поочерёдно вынимаются все шары, без возвращения.

Есть 10 шаров с номерами 1,2..10. вынимают наугад один шар. вероятность быть вытянутым для первого шара - р1, для второго - р2,... для десятого - р10. То есть для каждого шара различная.

известно, что первым был вытянут не шар с номером 1..

Потом наугад вынимают следующий шар.

нужно подсчитать вероятность того, что вторым будет вынут шар с номером 1.


При втором вытягивании вероятность вытащить один из ОСТАВШИХСЯ шаров тоже ПРОПОРЦИОНАЛЬНА (не равна!) их начальным приведенным в условии вероятностям?

Если так, то решение мне видится таким.

А - первый шар вынут вторым

Используем, например, формулу полной вероятности.
Гипотезы:
Н1 - первый шар вытянут первым
Н2 - второй шар вытянут первым
Н3 - третий шар вытянут первым
..

Н10 - десятый шар вытянут первым

Р(А)=Р(Н1)*Р(А/Н1)+Р(Н2)*Р(А/Н2)+...+Р(Н10)*Р(А/Н10)

Р(А)=р1*0+р2*Р(А/Н2)+...+р10*Р(А/Н10)

Р(А)=р2*Р(А/Н2)+...+р10*Р(А/Н10)

Для вычисления записанных выше условных вероятностей надо ПРОПОРЦИОНАЛЬНО перевычислить
вероятность вытащить первый.
Например, как мне кажется

Р(А/Н2)=р1/(р1+р3+р4+...+р10)
(в знаменателе намеренно пропущена р2)
Вроде так, если я правильно понял условия о неоднородности шаров).
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 1:54

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru